リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Promotional Effect of Surface Plasmon Resonance on Direct Formation of Hydrogen Peroxide from H2 and O2 over Pd/Graphene-Au Nanorod Catalytic System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Promotional Effect of Surface Plasmon Resonance on Direct Formation of Hydrogen Peroxide from H2 and O2 over Pd/Graphene-Au Nanorod Catalytic System

Takeharu Yoshii Yasutaka Kuwahara Kohsuke Mori Hiromi Yamashita 東北大学 DOI:10.1016/j.jcat.2020.05.028

2020.03.31

概要

A promotional effect of surface plasmon resonance (SPR) on direct hydrogen peroxide (H2O2) formation from H2 and O2 over a structure-controlled Pd-Au catalytic system is reported herein. Pd NPs supported on reduced graphene oxide (rGO) layer-coated Au nanorod (NR) nanocomposite catalysts were synthesized, and the structure was confirmed by multiple characterization techniques. H2O2 production is highly enhanced under visible light irradiation in the direct H2O2 formation from H2 and O2. The H2O2 decomposition test and the H2-D2 exchange reaction reveal that the SPR of Au NRs facilitates H2 activation on the Pd NP surface, leading to efficient H2O2 production. Furthermore, the rGO layer not only functions as an electron mediator in the catalytic reaction, but also contributes to the control of Pd NP sizes in the catalyst synthesis.

この論文で使われている画像

参考文献

[1] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Wasserstoffperoxid- Synthese: Perspektiven jenseits des Anthrachinon-Verfahrens, Angew. Chemie. 118 (2006) 7116–7139. https://doi.org/10.1002/ange.200503779.

[2] C. Samanta, Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process, Appl. Catal. A Gen. 350 (2008) 133–149. https://doi.org/10.1016/j.apcata.2008.07.043.

[3] S. Melada, F. Pinna, G. Strukul, S. Perathoner, G. Centi, Direct synthesis of H2O2 on monometallic and bimetallic catalytic membranes using methanol as reaction medium, J. Catal. 237 (2006) 213–219. https://doi.org/10.1016/j.jcat.2005.11.008.

[4] I. Kumaniaev, J.S.M. Samec, Adsorption Isotherms of Lignin-Derived Compounds on a Palladium Catalyst, Ind. Eng. Chem. Res. 58 (2019) 6899–6906. https://doi.org/10.1021/acs.iecr.8b06159.

[5] F. Menegazzo, M. Signoretto, E. Ghedini, G. Strukul, Looking for the “Dream Catalyst” for Hydrogen Peroxide Production from Hydrogen and Oxygen, Catalysts. 9 (2019) 251. https://doi.org/10.3390/catal9030251.

[6] H. Xu, D. Cheng, Y. Gao, Design of High-Performance Pd-Based Alloy Nanocatalysts for Direct Synthesis of H2O2, ACS Catal. 7 (2017) 2164–2170. https://doi.org/10.1021/acscatal.6b02871.

[7] K. Nakatsuka, K. Mori, S. Okada, S. Ikurumi, T. Kamegawa, H. Yamashita, Hydrophobic modification of Pd/SiO2@single-site mesoporous silicas by triethoxyfluorosilane: Enhanced catalytic activity and selectivity for one-pot oxidation, Chem. - A Eur. J. 20 (2014) 8348–8354. https://doi.org/10.1002/chem.201402586.

[8] Y.F. Han, Z. Zhong, K. Ramesh, F. Chen, L. Chen, T. White, Q. Tay, S.N. Yaakub, Z. Wang, Au promotional effects on the synthesis of H2O2 directly from H2 and O2 on supported Pd-Au alloy catalysts, J. Phys. Chem. C. 111 (2007) 8410–8413. https://doi.org/10.1021/jp072934g.

[9] A. Plauck, E.E. Stangland, J.A. Dumesic, M. Mavrikakis, Active sites and mechanisms for H 2 O 2 decomposition over Pd catalysts , Proc. Natl. Acad. Sci. 113 (2016) E1973–E1982. https://doi.org/10.1073/pnas.1602172113.

[10] J. Gu, S. Wang, Z. He, Y. Han, J. Zhang, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over activated-carbon-supported Pd-Ag alloy catalysts, Catal. Sci. Technol. 6 (2016) 809–817. https://doi.org/10.1039/c5cy00813a.

[11] J. Zhang, B. Huang, Q. Shao, X. Huang, Highly Active, Selective, and Stable Direct H2O2 Generation by Monodispersive Pd-Ag Nanoalloy, ACS Appl. Mater. Interfaces. 10 (2018) 21291–21296. https://doi.org/10.1021/acsami.8b03756.

[12] I. Kim, M.G. Seo, C. Choi, J.S. Kim, E. Jung, G.H. Han, J.C. Lee, S.S. Han, J.P. Ahn, Y. Jung, K.Y. Lee, T. Yu, Studies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes, ACS Appl. Mater. Interfaces. 10 (2018) 38109–38116. https://doi.org/10.1021/acsami.8b14166.

[13] M. Manzoli, Boosting the Characterization of Heterogeneous Catalysts for H2O2 Direct Synthesis by Infrared Spectroscopy, Catalysts. 9 (2019) 30. https://doi.org/10.3390/catal9010030.

[14] U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures, Nat. Catal. 1 (2018) 656–665. https://doi.org/10.1038/s41929-018-0138-x.

[15] W. Ye, R. Long, H. Huang, Y. Xiong, Plasmonic nanostructures in solar energy conversion, J. Mater. Chem. C. 5 (2017) 1008–1021. https://doi.org/10.1039/c6tc04847a.

[16] Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, C. Zhang, SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles, Opt. Express. 26 (2018) 21784-21796. https://doi.org/10.1364/OE.26.021784.

[17] J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, C. Zhang, 3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS 2 hybrid with pyramid structure, Opt. Express. 26 (2018) 21546-21557. https://doi.org/10.1364/OE.26.021546.

[18] J. Yu, Y. Guo, H. Wang, S. Su, C. Zhang, B. Man, F. Lei, Quasi Optical Cavity of Hierarchical ZnO Nanosheets@Ag Nanoravines with Synergy of Near- and Far-Field Effects for in Situ Raman Detection, J. Phys. Chem. Lett. 10 (2019) 3676–3680. https://doi.org/10.1021/acs.jpclett.9b01390.

[19] C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y.J. Liu, X. Gao, A. Liu, B. Man, SERS activated platform with three-dimensional hot spots and tunable nanometer gap, Sensors Actuators B Chem. 258 (2018) 163–171. https://doi.org/10.1016/j.snb.2017.11.080.

[20] C. Zhang, S.Z. Jiang, Y.Y. Huo, A.H. Liu, S.C. Xu, X.Y. Liu, Z.C. Sun, Y.Y. Xu, Z. Li, B.Y. Man, SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure, Opt. Express. 23 (2015) 24811-24821. https://doi.org/10.1364/OE.23.024811.

[21] Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Surface- Plasmon-Driven Hot Electron Photochemistry, Chem. Rev. 118 (2018) 2927–2954. https://doi.org/10.1021/acs.chemrev.7b00430.

[22] J. Guo, Y. Zhang, L. Shi, Y. Zhu, M.F. Mideksa, K. Hou, W. Zhao, D. Wang, M. Zhao, X. Zhang, J. Lv, J. Zhang, X. Wang, Z. Tang, Boosting Hot Electrons in Hetero- superstructures for Plasmon-Enhanced Catalysis, J. Am. Chem. Soc. 139 (2017) 17964– 17972. https://doi.org/10.1021/jacs.7b08903.

[23] A. Marimuthu, J. Zhang, S. Linic, Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State, Science (80-. ). 339 (2013) 1590–1593. https://doi.org/10.1126/science.1231631.

[24] X. Zhang, X. Li, D. Zhang, N.Q. Su, W. Yang, H.O. Everitt, J. Liu, Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation, Nat. Commun. 8 (2017) 14542. https://doi.org/10.1038/ncomms14542.

[25] S. Mukherjee, L. Zhou, A.M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, N.J. Halas, Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2, J. Am. Chem. Soc. 136 (2014) 64–67. https://doi.org/10.1021/ja411017b.

[26] S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J.B. Lassiter, E.A. Carter, P. Nordlander, N.J. Halas, Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H 2 on Au, Nano Lett. 13 (2013) 240–247. https://doi.org/10.1021/nl303940z.

[27] T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, C. Yan, Strong Polarization Dependence of Plasmon-Enhanced of plasmon-enhanced fluoresStrong polarization dependenccence on single gold nanorods. (SI), Nano Lett. 9 (2009) 3896– 3903. https://doi.org/10.1021/nl902095q.

[28] T. Yoshii, Y. Kuwahara, K. Mori, H. Yamashita, Design of Pd–Graphene–Au Nanorod Nanocomposite Catalyst for Boosting Suzuki–Miyaura Coupling Reaction by Assistance of Surface Plasmon Resonance, J. Phys. Chem. C. 123 (2019) 24575–24583. https://doi.org/10.1021/acs.jpcc.9b06609.

[29] D.-K. Lim, A. Barhoumi, R.G. Wylie, G. Reznor, R.S. Langer, D.S. Kohane, Enhanced Photothermal Effect of Plasmonic Nanoparticles Coated with Reduced Graphene Oxide, Nano Lett. 13 (2013) 4075–4079. https://doi.org/10.1021/nl4014315.

[30] C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): An ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide, Analyst. 117 (1992) 1781–1784. https://doi.org/10.1039/AN9921701781.

[31] Y. Isaka, Y. Kondo, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles, Chem. Commun. 54 (2018) 9270–9273. https://doi.org/10.1039/C8CC02679C.

[32] L. Bai, X. Wang, Q. Chen, Y. Ye, H. Zheng, J. Guo, Y. Yin, C. Gao, Explaining the Size Dependence in Platinum-Nanoparticle-Catalyzed Hydrogenation Reactions, Angew. Chemie Int. Ed. 55 (2016) 15656–15661. https://doi.org/10.1002/anie.201609663.

[33] S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from H2, Science (80-. ). 339 (2013) 682–684. https://doi.org/10.1126/science.1231345.

[34] K. Mori, Y. Futamura, S. Masuda, H. Kobayashi, H. Yamashita, Controlled release of hydrogen isotope compounds and tunneling effect in the heterogeneously- catalyzed formic acid dehydrogenation, Nat. Commun. 10 (2019) 4094. https://doi.org/10.1038/s41467-019-12018-7.

[35] Z. Zheng, T. Tachikawa, T. Majima, Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level, J. Am. Chem. Soc. 137 (2015) 948–957. https://doi.org/10.1021/ja511719g.

[36] J. Guo, Y. Zhang, L. Shi, Y. Zhu, M.F. Mideksa, K. Hou, W. Zhao, D. Wang, M. Zhao, X. Zhang, J. Lv, J. Zhang, X. Wang, Z. Tang, Boosting Hot Electrons in Hetero- superstructures for Plasmon-Enhanced Catalysis, J. Am. Chem. Soc. 139 (2017) 17964–17972. https://doi.org/10.1021/jacs.7b08903.

[37] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017.

[38] S.Y. Liu, L. Huang, J.F. Li, C. Wang, Q. Li, H.X. Xu, H.L. Guo, Z.M. Meng, Z. Shi, Z.Y. Li, Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods, J. Phys. Chem. C. 117 (2013) 10636–10642. https://doi.org/10.1021/jp4001626.

[39] Z. Çiplak, N. Yildiz, A. Çalimli, Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods, Fullerenes, Nanotub. Carbon Nanostructures. 23 (2015) 361–370. https://doi.org/10.1080/1536383X.2014.894025.

[40] H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Adv. Funct. Mater. 19 (2009) 1987–1992. https://doi.org/10.1002/adfm.200900167.

[41] G.M. Lari, B. Puértolas, M. Shahrokhi, N. López, J. Pérez-Ramírez, Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand, Angew. Chemie Int. Ed. 56 (2017) 1775–1779. https://doi.org/10.1002/anie.201610552.

参考文献をもっと見る