リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phylogeographical evidence for historical long-distance dispersal in the flightless stick insect Ramulus mikado」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phylogeographical evidence for historical long-distance dispersal in the flightless stick insect Ramulus mikado

Suetsugu, Kenji Nozaki, Tomonari Hirota, K. Shun Funaki, Shoichi Ito, Katsura Isagi, Yuji Suyama, Yoshihisa Kaneko, Shingo 神戸大学

2023.10.11

概要

Exploring how organisms overcome geographical barriers to dispersal is a fundamental question in biology. Passive long-distance dispersal events, although infrequent and unpredictable, have a considerable impact on species range expansions. Despite limited active dispersal capabilities, many stick insect species have vast geographical ranges, indicating that passive long-distance dispersal is vital for their distribution. A potential mode of passive dispersal in stick insects is via the egg stage within avian digestive tracts, as suggested by experimental evidence. However, detecting such events under natural conditions is challenging due to their rarity. Therefore, to indirectly assess the potential of historical avian-mediated dispersal, we examined the population genetic structure of the flightless stick insect Ramulus mikado across Japan, based on a multifaceted molecular approach [cytochrome oxidase subunit I (COI) haplotypes, nuclear simple sequence repeat markers and genome-wide single nucleotide polymorphisms]. Subsequently, we identified unique phylogeographic patterns, including the discovery of identical COI genotypes spanning considerable distances, which substantiates the notion of passive long-distance genotypic dispersal. Overall, all the molecular data revealed the low and mostly non-significant genetic differentiation among populations, with identical or very similar genotypes across distant populations. We propose that long-distance dispersal facilitated by birds is the plausible explanation for the unique phylogeographic pattern observed in this flightless stick insect.

この論文で使われている画像

参考文献

1.

2.

Miura 0, Torchin ME, Bermingham E, Jacobs DK,

Hechinger RF. 2012 Flying shells: historical dispersal

of marine snails across Central America. Proc. R. Soc.

B 279, 1061-1067. (doi:10.1098/rspb.2011.1599)

Stone G, French V. 2003 Evolution: have

wings come, gone and come again? Curr. Biol.

13, R436-R438. (doi:10.1016/S09609822(03)00364-6)

3.

4.

Nicholson DB, Ross AJ, Mayhew PJ. 2014

Fossil evidence for key innovations in

the evolution of insect diversity. Proc. R. Soc. B

281, 20141823. (doi:10.1098/rspb.

2014.1823)

Wagner DL, Liebherr JK. 1992 Flightlessness in

insects. Trends Ecol. Evol. 7, 216-220. (doi:10.1016/

0169-5347(92)90047-F)

5.

6.

Ikeda H, Nishikawa M, Sota T. 2012 Loss of flight

promotes beetle diversification. Nat. Commun. 3,

648. (doi:10.1038/ncomms1659)

McCulloch GA, Wallis GP, Waters JM. 2017 Does

wing size shape insect biogeography? Evidence

from a diverse regional stonefly assemblage. Global

Ecol. Biogeogr. 26, 93-101. (doi:10.1111/geb.

12529)

II

;• '<

0,

.:;;;0

,...,

~-

. '<

-..::::,

c::

5!:

.:;;·

=r

==·

·o

..a

' ..::::-:

c::

OJ

vl

• -..::::,

c::r

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Engel MS, Grimaldi DA. 2004 New light shed on the

oldest insect. Nature 427, 627- 630. (doi:10.1038/

nature02291)

Simon S et al. 2019 Old world and new world

phasmatodea: phylogenomics resolve the

evolutionary history of stick and leaf insects. Front.

Ecol. Evol. 7, 345. (doi:10.3389/fevo.2019.00345)

Whiting MF, Bradler S, Maxwell T. 2003 Loss and

recovery of wings in stick insects. Nature 421,

264-267. (doi:10.1038/nature01313)

Maginnis TL. 2006 Leg regeneration stunts wing

growth and hinders flight performance in a stick

insect (Sipyloidea sipylus). Proc. R. Soc. B 273,

1811-1814. (doi:10.1098/rspb.2006.3508)

Robertson JA, Bradler S, Whiting MF. 2018 Evolution

of oviposition techniques in stick and leaf insects

(Phasmatodea). Front. Ecol. £vol. 6, 216. (doi:10.

3389/fevo.2018.00216)

Suetsugu K, Funaki S, Takahashi A, Ito K, Yokoyama

T. 2018 Potential role of bird predation in the

dispersal of otherwise flightless stick insects.

Ecology 99, 1504-1506. (doi:10.1002/ecy.2230)

Stanton AO, Dias DA, O'Hanlon JC. 2015 Egg

dispersal in the Phasmatodea: convergence in

chemical signaling strategies between plants and

animals? J. Chem. Ecol. 41, 689- 695. (doi:10.1007/

s10886-015-0604-8)

Kobayashi S, Usui R, Nomoto K, Ushirokita M, Denda

T, lzawa M. 2014 Does egg dispersal occur via the

ocean in the stick insect Megacrania tsudai

(Phasmida: Phasmatidae)? Ecol. Res. 29,

1025-1032. (doi:10.1007 /sl 1284-014-1188-4)

Chapman RF. 2013 The insects: structure and function.

Cambridge, UK: Cambridge University Press.

Suomalainen E. 1962 Significance of

parthenogenesis in the evolution of insects. Annu.

Rev. Entomol. 7, 349-366. (doi:10.1146/annurev.en.

07.010162.002025)

Wada S, Kawakami K, Chiba S. 2012 Snails can

survive passage through a bird's digestive system.

J. Biogeogr. 39, 69-73. (doi:10.1111/j.1365-2699.

2011.02559.x)

Hotaling S, Shain DH, Lang SA, Bagley RK, Tronstad

LM, Weisrock DW, Kelley JL. 2019 Long-distance

dispersal, ice sheet dynamics and mountaintop

isolation underlie the genetic structure of glacier ice

worms. Proc. R. Soc. B 286, 20190983. (doi:10.

1098/rspb.2019.0983)

Popp M, Mirre V, Brochmann C. 2011 A single MidPleistocene long-distance dispersal by a bird can

explain the extreme bipolar disjunction in

crowberries (Empetrum). Proc. Natl Acad. Sci.

USA 108, 6520-6525. (doi:10.1073/pnas.

1012249108)

Pineiro R, Popp M, Hassel K, Listi D, Westergaard

KB, Flatberg Kl, Sten0ien HK, Brochmann C. 2012

Circumarctic dispersal and long-distance

colonization of South America: the moss genus

Cinc/idium. J. Biogeogr. 39, 2041-2051. (doi:10.

1111/j.1365-2699.2012.02765.x)

Viana DS, Gangoso L, Bouten W, Figuerola J. 2016

Overseas seed dispersal by migratory birds. Proc. R. Soc.

B 283, 20152406. (doi:10.1098/rspb.2015.2406)

22. Yano K, Ozaki T, Suzuki T, Yamazaki H, Nasuno M,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Degawa Y, Tojo K. 2021 Outbreak of the stick insect,

Ramu/us mikado (Phasmatodea, Phasmatidae), in

the Akashina area of Japan (Azumino City, Nagano

Prefecture). Entomol. Sci. 24, 196- 200. (doi:10.

111 l/ens.12467)

Aoki K, Kato M, Murakami N. 2011 Phylogeography

of phytophagous weevils and plant species in

broadleaved evergreen forests: a congruent genetic

gap between western and eastern parts of Japan.

Insects 2, 128-150. (doi:10.3390/insects2020128)

Tojo K, Sekine K, Takenaka M, lsaka Y, Komaki S,

Suzuki T, Schoville SD. 2017 Species diversity of

insects in Japan: their origins and diversification

processes. Entomol. Sci. 20, 357-381 . (doi:10.1111/

ens.12261)

Sekine K, Hayashi F, Tojo K. 2013 Phylogeography of

the East Asian polymitarcyid mayfly genus Ephoron

(Ephemeroptera: Polymitarcyidae): a comparative

analysis of molecular and ecological characteristics:

phylogeography of the East Asian Mayfly. Biol. J.

Linn. Soc. Lond. 109, 181-202. (doi:10.1111/bij.

12033)

Sota T, Hayashi M. 2007 Comparative historical

biogeography of Plateumaris leaf beetles

(Coleoptera: Chrysomelidae) in Japan: interplay

between fossil and molecular data. J. Biogeogr. 34,

977- 993. (doi:10.1111/j.1365-2699.2006.01672.x)

Aoki K, Kato M, Murakami N. 2008 Glacial bottleneck

and postglacial recolonization of a seed parasitic

weevil, Curculio hilgendorfi, inferred from

mitochondrial DNA variation. Mo/. Ecol. 17,

3276-3289. (doi:10.1111/j.1365-294X.2008.03830.x)

Ito M, Kajimura H. 2009 Phylogeography of an

ambrosia beetle, Xylosandrus crassiuscu/us

(Motschulsky)(Coleoptera: Curculionidae:

Scolytinae), in Japan. Appl. Entomol. Zoo/. 44,

549-559. (doi:10.1303/aez.2009.549)

Saito R, Tojo K. 2016 Complex geographic- and

habitat-based niche partitioning of an East Asian

habitat generalist mayfly /sonychia japonica

(Ephemeroptera:lsonychiidae) with reference to

differences in genetic structure. Freshwater Sci. 3S,

712-723. (doi:10.1086/686564)

Araki Y, Sota T. 2021 Population genetic structure

underlying the geographic variation in beetle

structural colour with multiple transition zones.

Mo/. Ecol. 30, 670-684. (doi:10.1111/mec.15758)

Aoki K, Murakami N, Kato M. 201 OPhylogeography

of a specialist leaf-mining weevil, Rhynchaenus

dorsoplanatus (Coleoptera: Curculionidae),

associated with Castanopsis species. Ann.

Entomol. Soc. Am. 103, 379-388. (doi:10.1603/

AN09157)

Miyakawa M, Hosoi M, Kawakita A, lto-Harashima S,

Yagi T, Ishihara M. 2018 Genetic variations and

phylogeography of the swallowtail butterfly Papilio

machaon on the Japanese Islands. Entomol. Sci. 21,

248-259. (doi:10.1111/ens.12302)

Ohnishi 0, Takenaka M, Okano R, Yoshitomi H, Tojo

K. 2021 Wide-scale gene flow, even in insects that

have lost their flight ability: presence of dispersion

due to a unique parasitic ecological strategy of

34.

35.

36.

37.

38.

39.

40.

41 .

42.

43.

piggybacking hosts. Zoo/. Sci. 38, 122-139. (doi:10.

2108/zs200088)

Machida R, Kano Y, Yominaga 0. 2016 The standard

of polyneoptera in Japan. Tokyo, Japan: Gakken

Plus.

Bradley JC, Galil BS. 1977 The taxonomic

arrangement of the Phasmatoedea with keys to the

subfamilies and tribes. Proc. Ent. Soc. Wash. 79,

176- 208.

Thompson JD, Higgins DG, Gibson TJ. 1994 CLUSTAL

W: Improving the sensitivity of progressive multiple

sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix

choice. Nucleic Acids Res. 22, 4673-4680. (doi:10.

1093/nar/22.22.4673)

Tamura K, Stecher G, Peterson D, Filipski A, Kumar

S. 2013 MEGA6: molecular evolutionary genetics

analysis version 6.0. Mo/. Biol. £vol. 30, 2725-2729.

(doi:10.1093/molbev/mstl 97)

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC,

Guirao-Rico S, Librado P, Ramos-Onsins SE, SanchezGracia A. 2017 DnaSP 6: DNA sequence

polymorphism analysis of large data sets. Mo/. Biol.

£vol. 34, 3299-3302. (doi:10.1093/molbev/msx248)

Nei M. 1987 Molecular evolutionary genetics.

New York, NY: Columbia University Press. (doi:10.

7312/nei-92038)

Excoffier L, Lischer HEL. 2010 Arlequin suite ver 3.5:

a new series of programs to perform population

genetics analyses under Linux and Windows. Mo/.

Ecol. Resour. 10, 564-567. (doi:10.1111/j.17550998.2010.02847.x)

Huson DH, Bryant D. 2006 Application of

phylogenetic networks in evolutionary studies. Mo/.

Biol. £vol. 23, 254-267. (doi:10.1093/molbev/

msj030)

Peakall R, Smouse PE. 2012 GenAIEx 6.5: genetic

analysis in Excel. Population genetic software for

teaching and research-an update. Bioinformatics

28, 2537-2539. (doi:10.1093/bioinformatics/

bts460)

Tamura K, Nei M, Kumar S. 2004 Prospects for

inferring very large phylogenies by using the

neighbor-joining method. Proc. Natl Acad. Sci. USA

101, 11 030-11 035. (doi:10.1073/pnas.

0404206101)

44. Blacket MJ, Robin C, Good RT, Lee SF, Miller AD.

2012 Universal primers for fluorescent labelling of

PCR fragments-an efficient and cost-effective

approach to genotyping by fluorescence. Mo/. Ecol.

Resour. 12, 456-463. (doi:10.llll/j.1755-0998.

2011.03104.x)

45. Goudet J. 2001 FSTAT. See https://www2.unil.ch/

popgen/softwares/fstat.htm.

46. Nei M, Tajima F, Tateno Y. 1983 Accuracy of

estimated phylogenetic trees from molecular data II. Gene frequency data. J. Mo/. £vol. 19, 153-170.

(doi:10.1007/BF02300753)

47. Langella 0. 2007 Populations ver. 1.2. 30:

population genetic software (individuals or

populations distances, phylogenetic trees).

See http://bioinformatics.org/-tryphon/

populations/.

;• '<

0,

.:;;;0

,...,

~-

. '<

-.::::,

c::

5!:

.:;;·

=r

==·

·o

..a

' ..::::-:

c::

OJ

: ~

V,

-.::::,

. c~

c3

"?=>

0:,

\0

!=:>

--.J

00

48. Suyama Y, Matsuki Y. 2015 MIG-seq: an effective

PCR-based method for genome-wide singlenucleotide polymorphism genotyping using the

next-generation sequencing platform. Sci. Rep. 5,

16963. (doi:10.1038/srep16963)

49. Takahashi Y, Suyama Y, Matsuki Y, Funayama R,

Nakayama K, Kawata M. 2016 Lack of genetic

variation prevents adaptation at the geographic

range margin in a damselfly. Mo/. Ecol. 25,

4450-4460. (doi:10.1111/mec.13782)

50. Nakahama N, Okano R, Nishimoto Y, Matsuo A, Ito

N, Suyama Y. 2022 Possible dispersal of the coastal

and subterranean carabid beetle Thalassoduva/ius

masidai (Coleoptera) by ocean currents. Biol. J. Linn.

Soc. 135, 265-276. (doi:10.1093/biolinnean/

blab146)

51 . Suyama Y, Hirota SK, Matsuo A, Tsunamoto Y, Mitsuyuki

C, Shimura A, Okano K. 2022 Complementary

combination of multiplex high-throughput DNA

sequencing for molecular phylogeny. Ecol. Res. 37,

171-181. (doi:10.1111/1440-1703.12270)

52. Suetsugu K, Hirota SK, Suyama Y. 2021 First record

of Goodyerax tamnaensis (Orchidaceae) from Boso

Peninsula, Chiba Prefecture, Japan, based on

morphological and molecular data. Taiwania 66,

113- 120.

53. Rochette NC, Rivera-Colon AG, Catchen JM. 2019

Stacks 2: Analytical methods for paired-end

sequencing improve RADseq-based population

genomics. Mo/. Ecol. 28, 4737-4754. (doi:10.1111/

mec.15253)

54. Kamvar ZN, Brooks JC, Grunwald NJ. 2015 Novel R

tools for analysis of genome-wide population

genetic data with emphasis on clonality. Front.

Genet. 6, 208. (doi:10.3389/fgene.2015.00208)

55. Gruber B, Unmack PJ, Berry OF, Georges A. 2018

dartr : An r package to facilitate analysis of SNP

data generated from reduced representation

genome sequencing. Mo/. Ecol. Resour. 18,

691-699. (doi:10.1111/1755-0998.12745)

56. Mijangos JL, Gruber B, Berry 0, Pacioni C, Georges

A. 2022 DARTR v2: An accessible genetic analysis

platform for conservation, ecology and agriculture.

Methods Ecol. Eva/. 13, 2150-2158. (doi:10.1111/

2041-210X.13918)

57. Cavalli-Sforza LL, Edwards AW. 1967 Phylogenetic

analysis: models and estimation procedures. Am. J.

Hum. Genet. 19, 233.

58. Green AJ, Sanchez Ml. 2006 Passive internal

dispersal of insect larvae by migratory birds. Biol.

Lett. 2, 55-57. (doi:10.1098/rsbl.2005.0413)

59. Lovas-Kiss A, Vizi B, Vinae 0, Molnar VA, Green AJ.

2018 Endozoochory of aquatic ferns and

angiosperms by mallards in Central Europe. J. Ecol.

106, 1714-1723. (doi:10.1111/1365-2745.12913)

60. Lovas-Kiss A, Vinae 0, Loki V, Paller-Kapusi F,

Halasi-Kovacs B, Kovacs G, Green AJ, Lukacs BA.

2020 Experimental evidence of dispersal of invasive

cyprinid eggs inside migratory waterfowl. Proc. Natl

Acad. Sci. USA 117, 15 397-15 399. (doi:10.1073/

pnas.2004805117)

61. Freitas S, Parker DJ, Labedan M, Dumas Z,

Schwander T. 2023 Evidence for cryptic gene flow in

parthenogenetic stick insects of the genus Timema.

BioRxiv. (doi:10.1101/2023.01 .21 .525009)

62. Nozaki T, Chikami Y, Yano K, Sato R, Suetsugu K,

Kaneko S. 2023 Fruitless mating with the exes: the

irreversible parthenogenesis in a stick insect.

BioRxiv, 2023.07.28.550994. (doi:10.1101/2023.07.

28.550994)

63. Schwander T, Crespi BJ. 2009 Twigs on the tree of

life? Neutral and selective models for integrating

macroevolutionary patterns with microevolutionary

processes in the analysis of asexuality. Mo/. Ecol. 18,

28-42. (doi:10.1111 /j.1365-294X.2008.03992.x)

64. Alavi Y, van Rooyen A, Elgar MA, Jones TM, Weeks

AR. 2018 Novel microsatellite markers suggest the

mechanism of parthenogenesis in Extatosoma

tiaratum is automixis with terminal fusion. Insect

Sci. 25, 24-32. (doi:10.1111/1744-7917.12373)

65. Peccoud J, Figueroa CC, Silva AX, Ramirez CC, Mieuzet

L, Bonhomme J, Stoeckel S, Plantegenest M, Simon

J-C. 2008 Host range expansion of an introduced

insect pest through multiple colonizations of

specialized clones. Mo/. Ecol. 17, 4608-4618. (doi:10.

1111/j.1365-294X.2008.03949.x)

66. Sekine K, Hayashi F, Tojo K. 2015 Unexpected

monophyletic origin of Ephoron shigae unisexual

reproduction strains and their rapid expansion across

Japan. R. Soc. Open Sci. 2, 150072. (doi:10.1098/

rsos.150072)

67. Quek 5-P, Davies SJ, ltino T, Pierce NE. 2004

Codiversification in an ant-plant mutualism: stem

texture and the evolution of host use in Crematogaster

(Formicidae: Myrmicinae) inhabitants of Macaranga

(Euphorbiaceae). Evolution 58, 554-570.

68. Brower AV. 1994 Rapid morphological radiation and

convergence among races of the butterfly Heliconius

erato inferred from patterns of mitochondrial DNA

evolution. Proc. Natl Acad. Sci. USA 91, 6491-6495.

(doi:10.1073/pnas.91.14.6491)

69. Wright S. 1943 Isolation by distance. Genetics 28,

114-138. (doi:10.1093/genetics/28.2.114)

70. Nishiuchi R, Momohara A, Osato S, Endo K. 2017

Temperate deciduous broadleaf forest dynamics

around the last glacial maximum in a hilly area in

the northern Kanto district, central Japan. Quot. Int.

455, 113-125. (doi:10.1016/j.quaint.2017.03.004)

71. Bradler S, Cliquennois N, Buckley TR. 2015 Single

origin of the Mascarene stick insects: ancient

radiation on sunken islands? BMC Eva/. Biol. 15,

1-10. (doi:10.1186/sl 2862-015-0478-y)

72. Morgan-Richards M, Langton-Myers 55, Trewick SA.

2019 Loss and gain of sexual reproduction in the

same stick insect. Mo/. Ecol. 28, 3929-3941.

(doi:10.1111/mec.15203)

73. Kondo T, Crisp MD, Linde C, Bowman DMJS,

Kawamura K, Kaneko S, lsagi Y. 2012 Not an ancient

relic the endemic Livistona palms of arid central

Australia could have been introduced by humans.

Proc. R. Soc. B 279, 2652-2661. (doi:10.1098/rspb.

2012.0103)

74. Miura 0, Torchin ME, Kuris AM, Hechinger RF, Chiba

S. 2006 Introduced cryptic species of parasites

exhibit different invasion pathways. Proc. Natl Acad.

Sci. USA 103, 19 818-19 823. (doi:10.1073/pnas.

0609603103)

75. lsagi Y, Oda T, Fukushima K, Lian C, Yokogawa M,

Kaneko S. 2016 Predominance of a single clone of

the most widely distributed bamboo species

Phyllostachys edulis in East Asia. J. Plant Res. 129,

21 - 27. (doi:10.1007/s10265-015-0766-z)

76. Hirao AS, Kobayashi T, Kudo G. 2011 Beringia, the

phylogeographic origin of a circumpolar plant,

Vaccinium uliginosum, in the Japanese Archipelago.

Acta Phytotaxonomica et Geobotanica 61, 155-160.

77. Ikeda H, Yoneta Y, Higashi H, Eidesen PB, Barkalov

V, Yakubov V, Brochmann C, Setoguchi H. 2015

Persistent history of the bird-dispersed arctic-alpine

plant Vaccinium vitis-idaea L. (Ericaceae) in Japan.

J. Plant Res. 128, 437-444. (doi:10.1007/s10265015-0709-8)

78. Shelomi M. 2011 Phasmid eggs do not survive

digestion by quails and chickens. J. Orthoptera Res.

20, 159- 162. (doi:10.1665/034.020.0203)

79. Morgan-Richards M, Trewick SA, Stringer IAN. 2010

Geographic parthenogenesis and the common teatree stick insect of New Zealand. Mo/. Ecol. 19,

1227-1238. (doi:10.1111/j.1365-294X.2010.04542.x)

80. Baker HG. 1967 Support for Baker's law-as a rule.

Evolution 21, 853-856. (doi:10.2307/2406780)

81 . Pannell JR et al. 2015 The scope of Baker's law. New

Phytol. 208, 656-667. (doi:10.1111/nph.13539)

82. Kiyosu Y. 1978 The birds of Japan. Tokyo, Japan:

Kodansha.

83. Nakamura K. 2008 Autumn migration of the browneared bulbul Hypsipetes amaurotis in Kanto district,

Japan: analysis of the data recorded by Saito

(1935-1943). J. Yamashina Inst. Ornithol. 39,

69-86. (doi:10.3312/jyio.39.69)

84. Morishita E, ltao K, Sasaki K, Higuchi H. 2003

Movements of crows in urban areas, based on PHS

tracking. Global Environ. Res. 7, 181-192.

85. Yoshikawa T, Kawakami K, Masaki T. 2019

Allometric scaling of seed retention time in

seed dispersers and its application to estimation

of seed dispersal potentials of theropod dinosaurs.

Oikos 128, 836-844. (doi:10.1111/oik.05827)

86. Tsuji Y, Wada K, Watanabe K. 2012 Non-woody

plant diet of wild Japanese macaques:

herbaceous plants, ferns, fungi, seaweeds, and

animal matter. Primate Res. 28, 21-48. (doi:10.

2354/psj.28.010)

87. Tomita Y. 2011 Natural history in Kameyama City.

Mie, Japan: Kameyama City.

88. Darwin C. 1859 On the origin of species by means of

natural selection. London, UK: John Murray.

89. Suetsugu K, Nozaki T, Hirota SK, Funaki S, Ito K,

lsagi Y, Suyama Y, Kaneko S. 2023

Phylogeographical evidence for historical longdistance dispersal in the flightless stick insect

Ramu/us mikado. Figshare. (doi:10.6084/m9.

figshare.c.6856621)

;• '<

0,

.:;;;0

,...,

~-

. '<

-.::::,

c::

5!:

.:;;·

=r

==·

·o

..a

' ..::::-:

c::

OJ

: ~

V,

-.::::,

. c~

c3

"?=>

0:,

\0

!=:>

--.J

00

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る