リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel genes and variants associated with congenital pituitary hormone deficiency in the era of next-generation sequencing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel genes and variants associated with congenital pituitary hormone deficiency in the era of next-generation sequencing

Bando, Hironori Urai, Shin Kanie, Keitaro Sasaki, Yuriko Yamamoto, Masaaki Fukuoka, Hidenori Iguchi, Genzo Camper, Sally A. 神戸大学

2022.09.27

概要

Combined pituitary hormone deficiency (CPHD) is not a rare disorder, with a frequency of approximately 1 case per 4,000 live births. However, in most cases, a genetic diagnosis is not available. Furthermore, the diagnosis is challenging because no clear correlation exists between the pituitary hormones affected and the gene(s) responsible for the disorder. Next-generation sequencing (NGS) has recently been widely used to identify novel genes that cause (or putatively cause) CPHD. This review outlines causative genes for CPHD that have been newly reported in recent years. Moreover, novel variants of known CPHD-related genes (POU1F1 and GH1 genes) that contribute to CPHD through unique mechanisms are also discussed in this review. From a clinical perspective, variants in some of the recently identified causative genes result in extra-pituitary phenotypes. Clinical research on the related symptoms and basic research on pituitary formation may help in inferring the causative gene(s) of CPHD. Future NGS analysis of a large number of CPHD cases may reveal new genes related to pituitary development. Clarifying the causative genes of CPHD may help to understand the process of pituitary development. We hope that future innovations will lead to the identification of genes responsible for CPHD and pituitary development.

参考文献

1. Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, et al. Genetics of combined pituitary hormone deficiency: Roadmap into the genome era. Endocr Rev (2016) 37:636–75. doi: 10.1210/er.2016-1101

2. Bloor S, GiriD,DidiM,Senniappan S.Novel splicing mutation in B3GAT3 associated with short stature, GH deficiency, hypoglycaemia, developmental delay, and multiple congenital anomalies. Case Rep Genet (2017) 2017:3941483. doi: 10.1155/2017/3941483

3. Verpula M, Danda VSR, Paidipally SR, Konda C. Bloom's syndrome with growth hormone deficiency: A rare association. BMJ Case Rep (2020) 13(10): e235238. doi: 10.1136/bcr-2020-235238

4. Kaygusuz SB, Arslan Ates E, Vignola ML, Volkan B, Geckinli BB, Turan S, et al. Dysgenesis and dysfunction of the pancreas and pituitary due to FOXA2 gene defects. J Clin Endocrinol Metab (2021) 106:e4142–54. doi: 10.1210/clinem/dgab352

5. Giri D, Vignola ML, Gualtieri A, Scagliotti V, McNamara P, Peak M, et al. Novel FOXA2 mutation causes hyperinsulinism, hypopituitarism with craniofacial and endoderm-derived organ abnormalities. Hum Mol Genet (2017) 26:4315–26. doi: 10.1093/hmg/ddx318

6. Vajravelu ME, Chai J, Krock B, Baker S, Langdon D, Alter C, et al. Congenital hyperinsulinism and hypopituitarism attributable to a mutation in FOXA2. J Clin Endocrinol Metab (2018) 103:1042–7. doi: 10.1210/jc.2017-02157

7. Gregory LC, Shah P, Sanner JRF, Arancibia M, Hurst J, Jones WD, et al. Mutations in MAGEL2 and L1CAM are associated with congenital hypopituitarism and arthrogryposis. J Clin Endocrinol Metab (2019) 104:5737–50. doi: 10.1210/jc.2019-00631

8. Tahoun M, Chandler JC, Ashton E, Haston S, Hannan A, Kim JS, et al. Mutations in LAMB2 are associated with albuminuria and optic nerve hypoplasia with hypopituitarism. J Clin Endocrinol Metab (2020) 105:595–9. doi: 10.1210/clinem/dgz216

9. Muriello M, Kim AY, Sondergaard Schatz K, Beck N, Gunay-Aygun M, Hoover- Fong JE. Growth hormone deficiency, aortic dilation, and neurocognitive issues infeingold syndrome 2. Am J Med Genet Part A (2019) 179:410–6. doi: 10.1002/ajmg.a.61037

10. Balicza P, Grosz Z, Molnár V, Illés A, Csabán D, Gézsi A, et al. NKX2-1 new mutation associated with myoclonus, dystonia, and pituitary involvement. Front Genet (2018) 9:335. doi: 10.3389/fgene.2018.00335

11. Prasad R, Nicholas AK, Schoenmakers N, Barton J. Haploinsufficiency of NKX2-1 in brain-Lung-Thyroid syndrome with additional multiple pituitary dysfunction. Hormone Res paedia (2019) 92:340–4. doi: 10.1159/000503683

12. Verberne EA, Faries S, Mannens M, Postma AV, van Haelst MM. Expanding the phenotype of biallelic RNPC3 variants associated with growth hormone deficiency. Am J Med Genet Part A (2020) 182:1952–6. doi: 10.1002/ ajmg.a.61632

13. Argente J, Flores R, Gutiérrez-Arumı́A, Verma B, Martos-Moreno G, Cuscó I, et al. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med (2014) 6:299–306. doi: 10.1002/ emmm.201303573

14. Argente J, Flores R, Gutiérrez-Arumı́A, Verma B, Martos-Moreno G, Cuscó I, et al. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med (2020) 12:e13133. doi: 10.15252/ emmm.202013133

15. Bashamboo A, Bignon-Topalovic J, Moussi N, McElreavey K, Brauner R. Mutations in the human ROBO1 gene in pituitary stalk interruption syndrome. J Clin Endocrinol Metab (2017) 102:2401–6. doi: 10.1210/jc.2016-1095

16. Dateki S, Watanabe S, Mishima H, Shirakawa T, Morikawa M, Kinoshita E, et al. A homozygous splice site ROBO1 mutation in a patient with a novel syndrome with combined pituitary hormone deficiency. J Hum Genet (2019) 64:341–6. doi: 10.1038/ s10038-019-0566-8

17. Liu Z, Chen X. A novel missense mutation in human receptor roundabout-1 (ROBO1) gene associated with pituitary stalk interruption syndrome. J Clin Res Pediatr Endocrinol (2020) 12:212–7. doi: 10.4274/jcrpe.galenos.2019.2018.0309

18. Budny B, Zemojtel T, Kaluzna M, Gut P, Niedziela M, Obara-Moszynska M, et al. SEMA3A and IGSF10 are novel contributors to combined pituitary hormone deficiency (CPHD). Front Endocrinol (2020) 11:368. doi: 10.3389/ fendo.2020.00368

19. Hu F, Sun L. Recognizable type of pituitary, heart, kidney and skeletal dysplasia mostly caused by SEMA3A mutation: A case report. World J Clin cases (2019) 7:3310–5. doi: 10.12998/wjcc.v7.i20.3310

20. Kinjo K, Nagasaki K, Muroya K, Suzuki E, Ishiwata K, Nakabayashi K, et al. Rare variant of the epigenetic regulator SMCHD1 in a patient with pituitary hormone deficiency. Sci Rep (2020) 10:10985. doi: 10.1038/s41598-020-67715-x

21. Bai X, Wei G, Sinha A, Esko JD. Chinese Hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J Biol Chem (1999) 274:13017–24. doi: 10.1074/jbc.274.19.13017

22. Cartault F, Munier P, Jacquemont ML, Vellayoudom J, Doray B, Payet C, et al. Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of reunion island syndrome. Eur J Hum Genet (2015) 23:49–53. doi: 10.1038/ejhg.2014.60

23. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, et al. The bloom's syndrome gene product is homologous to RecQ helicases. Cell (1995) 83:655–66. doi: 10.1016/0092-8674(95)90105-1

24. Diaz A, Vogiatzi MG, Sanz MM, German J. Evaluation of short stature, carbohydrate metabolism and other endocrinopathies in bloom's syndrome. Hormone Res (2006) 66:111–7. doi: 10.1159/000093826

25. Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, Gonzalez- Meljem JM, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development (2017) 144:2141–52. doi: 10.1242/ dev.150490

26. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene (2007) 26:3279–90. doi: 10.1038/sj.onc.1210421

27. Gualtieri A, Kyprianou N, Gregory LC, Vignola ML, Nicholson JG, Tan R, et al. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun (2021) 12:2028. doi: 10.1038/s41467-021-21712-4

28. Koika V, Varnavas P, Valavani H, Sidis Y, Plummer L, Dwyer A, et al. Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH). Gene (2013) 516:146–51. doi: 10.1016/ j.gene.2012.12.041

29. ErbaşİM, Paketci̧A, Acar S, Kotan LD, Demir K, Abacı A, et al. A nonsense variant in FGFR1: a rare cause of combined pituitary hormone deficiency. J Pediatr Endocrinol Metab (2020) 33:1613–5. doi: 10.1515/jpem-2020-0029

30. Xu N, Qin Y, Reindollar RH, Tho SP, McDonough PG, Layman LC. A mutation in the fibroblast growth factor receptor 1 gene causes fully penetrant normosmic isolated hypogonadotropic hypogonadism. J Clin Endocrinol Metab (2007) 92:1155–8. doi: 10.1210/jc.2006-1183

31. Tsai EA, Grochowski CM, Falsey AM, Rajagopalan R, Wendel D, Devoto M, et al. Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia. Hum Mutat (2015) 36:631–7. doi: 10.1002/humu.22786

32. Howard SR, Guasti L, Ruiz-Babot G, Mancini A, David A, Storr HL, et al. IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol Med (2016) 8:626–42. doi: 10.15252/emmm.201606250

33. Samatov TR, Wicklein D, Tonevitsky AG. L1CAM: Cell adhesion and more. Prog Histochem Cytochem (2016) 51:25–32. doi: 10.1016/j.proghi.2016.05.001

34. Vos YJ, de Walle HE, Bos KK, Stegeman JA, Ten Berge AM, Bruining M, et al. Genotype-phenotype correlations in L1 syndrome: A guide for genetic counselling and mutation analysis. J Med Genet (2010) 47:169–75. doi: 10.1136/jmg.2009.071688

35. Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet (2004) 13:2625–32. doi: 10.1093/hmg/ddh284

36. Ramadhani D, Tsukada T, Fujiwara K, Azuma M, Kikuchi M, Yashiro T. Changes in laminin chain expression in pre- and postnatal rat pituitary gland. Acta histochem cytochem (2014) 47:231–7. doi: 10.1267/ahc.14031

37. Tennese AA, Wevrick R. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology (2011) 152:967–78. doi: 10.1210/en.2010-0709

38. Mercer RE, Wevrick R. Loss of magel2, a candidate gene for features of prader-willi syndrome, impairs reproductive function in mice. PloS One (2009) 4: e4291. doi: 10.1371/journal.pone.0004291

39. Bischof JM, Stewart CL, Wevrick R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to prader-willi syndrome. Hum Mol Genet (2007) 16:2713–9. doi: 10.1093/hmg/ddm225

40. de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, et al. Germline deletion of the miR-17∼92 cluster causes skeletal and growth defects in humans. Nat Genet (2011) 43:1026–30. doi: 10.1038/ng.915

41. Zhang Z, Florez S, Gutierrez-Hartmann A, Martin JF, Amendt BA. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J Biol Chem (2010) 285:34718–28. doi: 10.1074/jbc.M110.126441

42. Cheung LY, Okano H, Camper SA. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes. Mol Cell Endocrinol (2017) 439:213–23. doi: 10.1016/j.mce.2016.09.005

43. Lazzaro D, Price M, de Felice M, Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development (1991) 113:1093–104. doi: 10.1242/ dev.113.4.1093

44. Patel AA, Steitz JA. Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol (2003) 4:960–70. doi: 10.1038/nrm1259

45. Russell AG, Charette JM, Spencer DF, Gray MW. An early evolutionary origin for the minor spliceosome. Nature (2006) 443:863–6. doi: 10.1038/ nature05228

46. Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA (2013) 4:61–76. doi: 10.1002/wrna.1141

47. Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development (2006) 133:2243–52. doi: 10.1242/dev.02379

48. Aujla PK, Bora A, Monahan P, Sweedler JV, Raetzman LT. The notch effector gene Hes1 regulates migration of hypothalamic neurons, neuropeptide content and axon targeting to the pituitary. Dev Biol (2011) 353:61–71. doi: 10.1016/j.ydbio.2011.02.018

49. Cariboni A, Davidson K, Rakic S, Maggi R, Parnavelas JG, Ruhrberg C. Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet (2011) 20:336–44. doi: 10.1093/hmg/ddq468

50. Hanchate NK, Giacobini P, Lhuillier P, Parkash J, Espy C, Fouveaut C, et al. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with kallmann syndrome. PloS Genet (2012) 8:e1002896. doi: 10.1371/journal.pgen.1002896

51. Hofmann K, Zweier M, Sticht H, Zweier C, Wittmann W, Hoyer J, et al. Biallelic SEMA3A defects cause a novel type of syndromic short stature. Am J Med Genet Part A (2013) 161A(11):2880–9. doi: 10.1002/ajmg.a.36250

52. Visel A, Thaller C, Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res (2004) 32:D552–6. doi: 10.1093/nar/gkh029

53. Nozawa RS, Nagao K, Igami KT, Shibata S, Shirai N, Nozaki N, et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1- HBiX1 pathway. Nat Struct Mol Biol (2013) 20:566–73. doi: 10.1038/nsmb.2532

54. Wanigasuriya I, Gouil Q, Kinkel SA, Tapia Del Fierro A, Beck T, Roper EA, et al. Smchd1 is a maternal effect gene required for genomic imprinting. Elife (2020) 9:e55529. doi: 10.7554/eLife.55529

55. Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet (2011) 12:683–91. doi: 10.1038/nrg3051

56. Møller LB, Tümer Z, Lund C, Petersen C, Cole T, Hanusch R, et al. Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical menkes disease or occipital horn syndrome. Am J Hum Genet (2000) 66:1211–20. doi: 10.1086/302857

57. Hastings ML, Resta N, Traum D, Stella A, Guanti G, Krainer AR. An LKB1 AT-AC intron mutation causes peutz-jeghers syndrome via splicing at noncanonical cryptic splice sites. Nat Struct Mol Biol (2005) 12:54–9. doi: 10.1038/nsmb873

58. Suzuki S, Matsuo K, Ito Y, Kobayashi A, Kokumai T, Furuya A, et al. A mutation of the b-domain in POU1F1 causes pituitary deficiency due to dominant PIT-1b expression. Eur J Endocrinol (2021) 185:1–12. doi: 10.1530/EJE-20-1313

59. Gergics P, Smith C, Bando H, Jorge AAL, Rockstroh-Lippold D, Vishnopolska SA, et al. High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency. Am J Hum Genet (2021) 108:1526–39. doi: 10.1016/j.ajhg.2021.06.013

60. Alatzoglou KS, Dattani MT. Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD). Indian J Pediatr (2012) 79:99–106. doi: 10.1007/s12098-011-0614-7

61. Binder G, Keller E, Mix M, Massa GG, Stokvis-Brantsma WH, Wit JM, et al. Isolated GH deficiency with dominant inheritance: New mutations, new insights. J Clin Endocrinol Metab (2001) 86:3877–81. doi: 10.1210/jcem.86.8.7757

62. McGuinness L, Magoulas C, Sesay AK, Mathers K, Carmignac D, Manneville JB, et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology (2003) 144:720–31. doi: 10.1210/en.2002-220847

63. Lee MS, Wajnrajch MP, Kim SS, Plotnick LP, Wang J, Gertner JM, et al. Autosomal dominant growth hormone (GH) deficiency type II: The Del32-71-GH deletion mutant suppresses secretion of wild-type GH. Endocrinology (2000) 141:883–90. doi: 10.1210/endo.141.3.7380

64. Pérez Millán MI, Vishnopolska SA, Daly AZ, Bustamante JP, Seilicovich A, BergadáI, et al. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol Genet genomic Med (2018) 6:514–25. doi: 10.1002/mgg3.395

65. Sertedaki A, Tatsi EB, Vasilakis IA, Fylaktou I, Nikaina E, Iacovidou N, et al. Whole exome sequencing points towards a multi-gene synergistic action in the pathogenesis of congenital combined pituitary hormone deficiency. Cells (2022) 11 (13):2088. doi: 10.3390/cells11132088

66. Budny B, Karmelita-Katulska K, Stajgis M, Żemojtel T, Ruchała M, Ziemnicka K. Copy number variants contributing to combined pituitary hormone deficiency. Int J Mol Sci (2020) 21(16):5757. doi: 10.3390/ijms21165757

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る