リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Machine-leaning Assisted Optimization for Organo-catalytic Reactions in Flow System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Machine-leaning Assisted Optimization for Organo-catalytic Reactions in Flow System

Hettiarachchige Dona, Piyumi Wathsala 大阪大学 DOI:10.18910/85331

2021.09.24

概要

Optimization of reaction conditions is a crucial and unavoidable process in synthetic organic chemistry. In particular, developing a new synthetic reaction requires tedious screening and optimization of the relevant parameters, resulting in a wastage of a time, chemicals and energy. Thus a rapid, economical and effective protocol has been highly demanded. Herein, Machine Learning (ML) assisted optimization of multi-parameter screening for organoctalytic reactions1 in flow system has established by utilizing Gaussian Process Regression (GPR) and Bayesian Optimization (BO)2 with a minimum number of experimental studies.

Chapter 1. Exploration of flow reaction conditions using GPR for organocatalyzed domino reaction (Eq. 1)
The GPR was successfully applied to multi-parameter flow reaction screening for organocatalyzed Rauhut-Currier/[3+2] annulation sequence.3 After a brief experimental screening, the GPR with the experimental data (up to 10 entries) could rapidly predict the appropriate conditions (flow rate, temperature and substrate amount), leading to the formation of functionalized chiral spirooxindole analogues in high yields with up to 98% ee as a single diastereomer

Chapter 2. Bayesian optimization-assisted multi-parameter screening for an organo-catalytic flow synthesis of highly functionalized biaryls (Eq. 2)
The BO and experimental assessment using positive and negative results were successfully combined to accomplish the
simultaneous multi-parameter screening (including numerical and categorical parameters) for the preparation of highly functionalized biaryls. The BO with the experimental data (up to 15 entries) could rapidly predict the six optimal parameters (concentration, amount of reagent, flow rate, catalyst loading, temperature and type of flow reactor), resulting in biaryl with up to 96% yield.

この論文で使われている画像

参考文献

1. a) G. Bredig, W. S. Fiske, Biochem. Z. 1912, 7. b) W. Langenbeck, Angew. Chem. 1928, 41, 740. c) W. Langenbeck, Angew. Chem. 1932, 45, 97. d) F. G. Fischer, Ber. 1931, 64, 2825. e) W. Langenbeck, ibid., 1942, 75B, 951. f) Y. Tu. Z. Wang, Y. Shi, J. Am. Chem., Soc. 1996, 118, 9806. g). D. Yang, Y. Yip, M. Tang, M. Wong, J. Zheng, K. Cheung, J. Am. Chem. Soc. 1996, 118, 491. h) S. E. Denmark, Z. Wu, C. Crudden, H. Matsuhashi, J. Org. Chem. 1997, 62, 8288.

2. https://www.nobelprize.org/prizes/chemistry/2001/summary/

3. a) C. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167. b) E. Marque´s- Lo´pez, R. P. Herrera, M. Christmann, Nat. Prod. Rep. 2010, 27, 1138. c) M. Rueping, J. Dufour, F. R. Schoepke, Green Chem. 2011, 13, 1084. d) M. E. Abbasov, D. Romo, Nat. Prod. Rep. 2014, 31, 1318. e) G. J. R-Rodríguez, N. M. Rezayee, A. V. Albalat, K. A. Jørgensen, Chem. Rev. 2019, 119, 4221.

4. J. Alemán, S. Cabrera, Chem. Soc. Rev. 2013, 42, 774. b) D. L. Hughes, Org. Process Res. Dev. 2018, 22, 574.

5. a) I. R. Shaikh, J. Catal. 2014, 2014, 1. b) P. Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, Adv. Synth. Catal. 2015, 357, 253. c) L.-W. Xu, Chem. Cat. Chem. 2015, 5, 2775. d) C. Yang, Chem. Soc. Rev. 2021, 50, 1522. e) J. Wang, Y. Liu, X. Ni, X. Li, J. P. Cheng, Chem. Eur. J. 2017, 23, 5488.

6. H. Pracejus, Justus Liebigs Ann. Chem. 1960, 634, 23.

7. a) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615. b) U. Eder, G. Sauer, R. Wiechert, Angew. Chem. Int. Ed. 1971, 10, 496.

8. Y. M. A. Yamada, N. Yoshikawa, H. Sasai, M. Shibazaki, Angew. Chem. Int. Ed. Engl., 1997, 36, 1871.

9. B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 58, 5573.

10. K. A. Ahrendt, C. J. Borths, D. W. C. Macmillan, J. Am. Chem. Soc. 2000, 122, 4243.

11. G. S. Singh, E. M. Yeboah, Rep. Org. Chem. 2016, 6, 47.

12. a) J. C. Ruble, H. A. Latham, G. C. Fu, J. Am. Chem. Soc., 1997, 119, 1492. b) T. Kawabata, M. Nagata, K. Takasu, K. Fuji, J. Am. Chem. Soc., 1997, 119, 3169.

13. a) T. Okino, Y. Hoashi, Y Takemoto, J. Am. Chem. Soc. 2003, 125, 12672. b) M. S. Taylor, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520.

14. a) M. J. O'Donnell, W. D. Bennett, S. Wu, J. Am. Chem. Soc. 1989, 111, 2353. b) E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc. 1997, 119, 12414. c) T. Ooi, D. Ohara, M. Tamura, K. Maruoka, J. Am. Chem. Soc. 2004, 126, 6844. d) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222. e) K. Maruoka, T. Ooi, T. Kano, Chem. Commun. 2007, 1487. f) T. Ooi, K. Maruoka, Aldrichmica Acta 2007, 40, 77. g) T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656.

15. a) K. Matsui, S.Takizawa, H. Sasai, J. Am. Chem. Soc. 2005, 127, 3680. b) K. Matsui, S. Takizawa, H. Sasai, Synlett 2006, 5, 761.

16. a) S. Takizawa, N. Inoue, S. Hirata, H. Sasai, Angew. Chem. Int. Ed. 2010, 49, 9725. b) S. Takizawa, A. Horii, H. Sasai, Tetrahedron: Asymmetry 2010, 21, 891. c) S. Takizawa, K. Kiriyama, K. Ieki, H. Sasai, Chem. Commun. 2011, 47, 9227. d) S. Takizawa, F. A. Arteaga, Y. Yoshida, M. Suzuki, H. Sasai, Org. Lett. 2013, 15, 4142. e) S. Takizawa, K. Kishi, Y. Yoshida, S. Mader, F. A. Arteaga, S. Lee, M. Hoshino, M. Rueping, M. Fujita, H. Sasai, Angew. Chem. Int. Ed. 2015, 54, 15511. f) S. Takizawa, S. Hirata, K. Murai, H. Fujioka, H. Sasai, Org. Biomol. Chem. 2014, 12, 5827. g) S. Takizawa, M. Sako, M. A. Abozeid, K. Kishi, H. D. P. Wathsala, S. Hirata, K. Murai, H. Fujioka, H. Sasai, Org. Lett. 2017, 19, 5426. h) S. Takizawa, T. M.-N. Nguyen, A. Grossmann, D. Enders, H. Sasai, Angew. Chem., Int. Ed. 2012, 51, 5423. i) K. Kishi, F. A. Arteaga, S. Takizawa, H. Sasai, Chem. Commun. 2017, 53. 7724.

17. a) R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. Int. Ed. 2011, 50, 7502. b) A. C. Bédard, A. R. Longstreet, J. Britton, Y. Wang, H. Moriguchi, R. W. Hicklin, W. H. Green, T. F. Jamison, Bioorg. Med. Chem. 2017, 25, 6233.

18. a) B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688. b) V. Hessel, D. Kralisch, N. Kockmann, T. Noël, Q. Wang, ChemSusChem 2013, 6, 746. c) K. F. Jensen, AIChE. J. 2017, 63, 858. d) S. V. Ley, D. E. Fitzpatrick, R. J. Ingham, R. M. Myers, Angew. Chem. Int. Ed. 2015, 54, 3449. e) S. V. Ley, D. E. Fitzpatrick, R. M. Myers, C. Battilocchio, R. J. Ingham, Angew. Chem. Int. Ed. 2015, 54, 10122.

19. a) R. L. Hartman, J. P. McMullen, K. E. Jensen., Angew. Chem. Int. Ed. 2011, 50, 7502. b) K. D. Nagy, B. Shen, T. F. Jamison, K. F. Jensen, Org. Process Res. Dev. 2012, 16, 976.

20. a) F. Benito-López, R. J. M. Egberink, D. N. Reinhoudt, W. Verboom, Tetrahedron 2008, 64, 10023. b) J. T. Hodgkinson, W. R. J. D. Galloway, S. Saraf, I. R. Baxendale, S. V. Ley, M. Ladlow, M. Welch, D. R. Spring, Org. Biomol. Chem. 2011, 9, 57.

21. a) J. C. Brandt, T. Wirth Beilstein J. Org. Chem. 2009, doi: 10.3762/bjoc.5.30 b) M. Grafton, A. C. Mansfield, M. J. Fray, Tetrahedron Lett. 2010, 51, 1026.

22. a) H. E. Bartrum, D. C. Blakemore, C. J. Moody, C. J. Hayes., Chem. Eur. J. 2011, 17, 9586. b) S. Hübner, U. Bentrup, U. Budde, K. Lovis, T. Dietrich, A. Freitag, L. Küpper, K. Jähnisch, Org. Process Res. Dev. 2009, 13, 952. c) C. B. McPake, C. B. Murray, G. Sanford, Tetrahedron Lett. 2009, 50, 1674.

23. a) H. Lange, C. F. Carter, M. D, Hopkin, A. Burke, J. G. Goode, I. R. Baxendale, S. V. Ley, Chem. Sci. 2011, 2, 765. b) Z. Qian, I. R. Baxendale, S. V. Ley, Chem. Eur. J. 2010, 16, 12342. c) J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19.

24. L. Malet-Sanz, J. Madrzak, S. V. Ley, I. R. Baxendale, Org. Biomol. Chem. 2010, 8, 5324.

25. S. Mozharov, A. Nordon, D. Littlejohn, C. Wiles, P. Watts, P. Dallin, J. M. Girkin, J. Am. Chem. Soc. 2011, 133, 3601.

26. a) S. Newton, C. F. Carter, C. M. Pearson, L. de C Alves, H. Lange, P. Thansandote, S. V. Ley, Angew. Chem. Int. Ed. 2014, 53, 4913. b) D. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675.

27. M. D. Hopkin, I. R. Baxendale, S. V. Ley, Chim. Oggi. 2011, 29, 28.

28. C. J. Smith, N. Nikbin, S. V. Ley, H. Lange, I. R. Baxendale, Org. Biomol. Chem. 2011, 9, 1938.

29. a) A. Kirschning, W. Solodenko, K. Mennecke Chem. Eur. J. 2006, 12, 5972. b) D. E. Fitzpatrick, S. V. Ley, React. Chem. Eng. 2016, 1, 629. c) D. E. Fitzpatrick, C. Battilocchio, S. V. Ley, Org. Prcoess Res. Dev. 2016, 20, 386.

30. J. Britton, T. F. Jamison, Nat. Protoc. 2017, 12, 2423.

31. B. J. Reizman, K. F. Jensen, Acc. Chem. Res. 2016, 49, 1786. b) A. Chanda, A. M. Daly, D. A. Foley, M. A. LaPack, S. Mukherjee, J. D. Orr, G. L. Reid, D. R. Thompson, H. W. Ward, Org. Process Res. Dev. 2015, 19, 63. c) J. Yue, J. C. Schouten, T. A. Nijhuis, Ind. Eng. Chem. Res. 2012, 51, 14583. d) D. C. Fabry, E. Sugiono, M. Rueping, React. Chem. Eng. 2016, 1, 129. d) V. Sans, L. Cronin, Chem. Soc. Rev. 2016, 45, 2032.

32. L. Hohmann, S. K. Kurt, S. Soboll, N. Kockmann, J. Flow Chem. 2016, 6, 181.

33. a) A. H. C. Ayats, Henseler, M. A. Pericàs, ChemSusChem 2012, 5, 320. b) T. D. Machajewski, C-H. Wong, Angew. Chem. Int. Ed. 2011, 50, 7502.

34. T. Tsubogo, Y. Yamashita, S. Kobayashi, Chem. Eur. J. 2012, 18, 13624.

35. T. Tsubogo, H. Oyamada, S. Kobayashi, Nature 2015, 520, 329.

36. P. Ranjan, G. M. Ojeda, U. K. Sharma, E. V. Van der Eycken, Chem. Eur. J. 2019, 25, 2442.

37. M. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796.

38. a) V. Sans, L. Cronin, Chem. Soc. Rev. 2016, 45, 2032. b) D. C. Fabry, E. Sugiono, M. Rueping, React. Chem. Eng. 2016, 1, 129.

39. D. C. Borda, K. V. Kutonova, C. Jamet, M. E. Trusova, F. Zammattio, C. Truchet, M. R. Zubiri, F.X. Felpin, Org. Process Res. Dev. 2016, 20, 1979. b) B. J. Reizman, Y. M. Wang, S. L. Buchwald, K. F. Jensen, React. Chem. Eng. 2016, 1, 658. c) B. J. Reizman, K. F. Jensen, Chem. Commun. 2015, 51, 13290. d) J. P. McMullen, K. F. Jensen, Org. Process Res. Dev. 2010, 14, 1169. e) D. E. Fitzpatrick, C. Battilocchio, S. V. Ley, Org. Process Res. Dev. 2016, 20, 386.

40. A. C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, J. Torosian, B. Yue, K. F. Jensen and T. F. Jamison, Science 2018, 361, 1220.

41. P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564.

42. N. C. Bruno, M. T. Tudge, S. L. Buchwald, Chem. Sci. 2013, 4, 916.

43. K. Terayama, M. Sumita, R. Tamura, K. Tsuda, Acc. Chem. Res. 2021, 54, 1334.

44. X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Chem. Rev. 2019, 119, 10520.

45. a) K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 2018, 559, 547. b) A. F. Zahrt, J. J. Henle, B. T. Rose, Y.Wang, W. T. Darrow, S. E. Denmark, Science 2019, 363, 5631. c) D. J. Durand, N. Fey, Chem. Rev. 2019, 119, 6561.

46. a) S. A. Weissman, N. G. Anderson, Org. Process Res. Dev. 2015, 19, 1605. b) D. C. Borda, K. V. Kutonova, C. Jamet, M. E. Trusova, F. Zammattio, C. Truchet, M. R. Zubiri, F. X. Felpin, Org. Process Res. Dev. 2016, 20, 1979.

47. a) A. F. Almeida, R. Moreiraand, T. Rodrigues, Nat. Rev. Chem. 2019, 3, 589. b) J. S. Schreck, C. W. Coley, K. J. M. Bishop, ACS Cent. Sci. 2019, 5, 970.

48. a) A. M. S. Adam, D. C. Nicholas, H. Eric, B. Richard, A. B.Alexei, A. Lapkin, Chem. Eng. J. 2018, 352, 277. b) T. Hardwicka, N. Ahmed, Chem. Sci. 2020, 11, 11973.

49. P. Vámosi, K. Matsuo, T. Masuda, K. Sato, T. Narumi, K. Takeda, N. Mase. Chem. Rec. 2019, 19, 77.

50. J. Jacob, Int. J. Chem. 2012, 4, 29.

51. B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, A. G. Doyle, Nature 2021, 590, 89.

52. C. J. Taylor1, A, Baker, M. R. Chapman, W. R. Reynolds, K. E. Jolley, G. Clemens, G. E. Smith, A. J. Blacker, T. W. Chamberlain, S. D. R. Christie, B. A. Taylor, R. A. Bourne, J Flow Chem. 2021, 11, 75.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る