リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients with tongue cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients with tongue cancer

久保 克麿 広島大学

2022.03.23

概要

Surgical operation and brachytherapy are standard local treatments for early stage tongue
cancer.1 Patients who do not have poor prognostic factors and undergo treatment with these
modalities for tongue lesions that are small and have adequate treatment margins, are placed
under observation if their neck is clinically and radiographically cancer-free.1, 2 However, this
observation period may risk the development of occult cervical lymph node metastasis
(OCLNM), which may have been present during initial treatment but escaped detection even
after careful examination3. ...

この論文で使われている画像

参考文献

1.

National Comprehensive Cancer Network Inc NCCN Clinical Practice Guidelines in

Oncology. Head and Neck Cancers version 2. 2020. Available from URL:

https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf

2.

Machiels JP, René Leemans C, Golusinski W, Grau C, Licitra L, Gregoire V; EHNS

Executive

Board.

Electronic

address:

secretariat@ehns.org;

ESMO

Guidelines

Committee. Electronic address: clinicalguidelines@esmo.org; ESTRO Executive Board.

Electronic address: info@estro.org. Squamous cell carcinoma of the oral cavity, larynx,

oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for

diagnosis, treatment and follow-up. Ann Oncol. 2020; 31: 1462–1475.

3.

Imai T, Satoh I, Matsumoto K, et al. Retrospective observational study of occult cervical

lymph-node metastasis in T1N0 tongue cancer. Jpn J Clin Oncol. 2017; 47: 130–136.

4.

Shibuya H, Hoshina M, Takeda M, Matsumoto S, Suzuki S, Okada N. Brachytherapy for

stage I & II oral tongue cancer: an analysis of past cases focusing on control and

complications. Int J Radiat Oncol Biol Phys. 1993; 26: 51–58.

5.

Fujita M, Hirokawa Y, Kashiwado K, et al. Interstitial brachytherapy for stage I and II

squamous cell carcinoma of the oral tongue: factors influencing local control and soft

tissue complications. Int J Radiat Oncol Biol Phys. 1999; 44: 767–775.

6.

Fasunla AJ, Greene BH, Timmesfeld N, Wiegand S, Werner JA, Sesterhenn AM. A

meta-analysis of the randomized controlled trials on elective neck dissection versus

therapeutic neck dissection in oral cavity cancers with clinically node-negative neck.

Oral Oncol. 2011; 47: 320–324.

7.

D'Cruz AK, Vaish R, Kapre N, et al. Elective versus Therapeutic Neck Dissection in

Node-Negative Oral Cancer. N Engl J Med. 2015; 373: 521–529.

8.

Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information

from medical images using advanced feature analysis. Eur J Cancer. 2012; 48: 441–446.

9.

Thawani R, McLane M, Beig N, et al. Radiomics and radiogenomics in lung cancer: A

review for the clinician. Lung Cancer. 2018; 115: 34–41.

10. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics

and breast cancer. Breast Cancer Res Treat. 2018; 169: 217–229.

11. Peng Z, Wang Y, Wang Y, et al. Application of radiomics and machine learning in head

and neck cancers. Int J Biol Sci. 2021; 17: 475–486.

12. Giraud P, Giraud P, Gasnier A, et al. Radiomics and Machine Learning for Radiotherapy

in Head and Neck Cancers. Front Oncol. 2019; 9: 174.

13. Elhalawani H, Lin TA, Volpe S, et al. Machine Learning Applications in Head and Neck

Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Front Oncol.

2018; 8: 294.

14. Forghani R, Chatterjee A, Reinhold C, et al. Head and neck squamous cell carcinoma:

prediction of cervical lymph node metastasis by dual-energy CT texture analysis with

machine learning. Eur Radiol. 2019; 29: 6172–6181.

15. Yuan Y, Ren J, Tao X. Machine learning-based MRI texture analysis to predict occult

lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol.

2021; 31: 6429–6437.

16. Zhong YW, Jiang Y, Dong S, et al. Tumor radiomics signature for artificial neural

network-assisted detection of neck metastasis in patient with tongue cancer. J

Neuroradiol. 2021 Aug 4. doi: 10.1016/j.neurad.2021.07.006.

17. Grégoire V, Ang K, Budach W, et al. Delineation of the neck node levels for head and

neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI,

RTOG, TROG consensus guidelines. Radiother Oncol. 2014; 110: 172–181.

18. Haga A, Takahashi W, Aoki S, et al. Standardization of imaging features for radiomics

analysis. J Med Invest. 2019; 66: 35–37.

19. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics system to

decode the radiographic phenotype. Cancer Res. 2017; 77: e104.

20. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;

16: 385–395.

21. Zhang JX, Song W, Chen ZH, et al. Prognostic and predictive value of a microRNA

signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;

14: 1295 –1306.

22. Zhang Z. Introduction to machine learning: k-nearest neighbors. Ann Transl Med. 2016;

4: 218.

23. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20: 273–297.

24. Bel L, Allard D, Laurent JM, Cheddadi R, Bar-Hen A. CART algorithm for spatial data:

application to environmental and ecological data. Comput. Stat. Data Anal. 2009; 53:

3082–3093.

25. Breiman L. Random Forests. Mach Learn. 2001; 45: 5–32.

26. Hastie T, Rosset S, Zhu J, Zou H. Multi-class adaboost. Stat. Its Interface. 2009; 2: 349–

360.

27. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority

over-sampling technique. J Artif Intell Res. 2002; 16: 321–357.

28. Bulsara VM, Worthington HV, Glenny AM, Clarkson JE, Conway DI, Macluskey M.

Interventions for the treatment of oral and oropharyngeal cancers: surgical treatment.

Cochrane Database Syst Rev. 2018; 12: CD006205.

29. Bur AM, Holcomb A, Goodwin S, et al. Machine learning to predict occult nodal

metastasis in early oral squamous cell carcinoma. Oral Oncol. 2019; 92: 20–25.

30. Shan J, Jiang R, Chen X, et al. Machine Learning Predicts Lymph Node Metastasis in

Early-Stage Oral Tongue Squamous Cell Carcinoma. J Oral Maxillofac Surg. 2020; 78:

2208–2218.

31. Kwak MS, Eun YG, Lee JW, et al. Development of a machine learning model for the

prediction of nodal metastasis in early T classification oral squamous cell carcinoma:

SEER-based population study. Head Neck. 2021; 43: 2316–2324.

32. Matos LL, Manfro G, Santos RV, et al. Tumor thickness as a predictive factor of lymph

node metastasis and disease recurrence in T1N0 and T2N0 squamous cell carcinoma of

the oral tongue. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014; 118: 209–217.

33. Haraguchi K, Yoshiga D, Oda M, et al. Depth of invasion determined by magnetic

resonance imaging in tongue cancer can be a predictor of cervical lymph node metastasis.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 131: 231–240.

34. Baba A, Masuda K, Hashimoto K, et al. Correlation between the magnetic resonance

imaging features of squamous cell carcinoma of the buccal mucosa and pathologic depth

of invasion. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 131: 582–590.

35. Sun T, Zhang R, Wang J, Li X, Guo X. Computer-aided diagnosis for early-stage lung

cancer based on longitudinal and balanced data. PLoS One. 2013; 8: e63559.

36. Yan S, Qian W, Guan Y, Zheng B. Improving lung cancer prognosis assessment by

incorporating synthetic minority oversampling technique and score fusion method. Med

Phys. 2016; 43: 2694–2703.

Figure legends

Figure 1. Contouring of each neck node level.

Blue, green, red, yellow, and purple lines show levels Ia, Ib, II, III, and IVa, respectively, in

the ipsilateral neck side. The total neck node level consisted of these levels.

Figure 2. Data labeling.

a) Analysis in total neck node level. The total neck node level for each patient was labeled

“positive” or “negative” for occult cervical lymph node metastasis (OCLNM) based on the

presence of at least one metastasis in any level.

b) Analysis in each neck node level. Each neck node level was labeled individually as

“positive” or “negative” for OCLNM based on the presence of at least one metastasis in that

level.

Figure 3. Data analysis workflow.

CT, computed tomography; LASSO, least absolute shrinkage and selection operator; kNN,

k-nearest neighbor; SVM, support vector machine; CART, classification and regression trees;

RF, random forest; Ada, Ada Boost; SMOTE, synthetic minority oversampling technique.

Figure 4. Analysis of the total neck node level. Receiver operator characteristic (ROC) curves

with accuracy and an area under the curve (AUC) scores for each model with or without the

synthetic minority oversampling technique (SMOTE).

a) k-nearest neighbor (kNN)

b) Support vector machine (SVM)

c) Classification and regression trees (CART)

d) Random forest (RF)

e) Ada boost (Ada)

Figure 5. Analysis of each neck node level. Receiver operator characteristic (ROC) curves

with accuracy and an area under the curve (AUC) scores for each model with or without the

synthetic minority oversampling technique (SMOTE).

a) k-nearest neighbor (kNN)

b) Support vector machine (SVM)

c) Classification and regression trees (CART)

d) Random forest (RF)

e) Ada boost (Ada)

Table 1. Patient and tumor characteristics.

N = 161

100%

65 (22–91)

Male

80

49.7

Female

81

50.3

Right

83

51.6

Left

78

48.4

Tis

28

17.4

T1

45

28.0

T2

81

50.3

T3

4.3

Yes

38

23.6

No

122

75.8

0.6

Yes

75

46.6

No

73

45.3

Not available

13

8.1

Surgery

102

63.4

Brachytherapy

59

36.6

Yes

46

28.6

No

115

71.4

Age, years, median (range)

Sex

Location

Clinical T category

Ulcer

Not available

Smoking history

Treatment

Occult neck metastasis

Level of occult neck metastasis

N = 46

Ia

6.5

Ib

24

52.2

II

25

54.3

III

17.4

6.5

IVa

Texture analysis feature

Wavelet-HLL_glcm_Imc1

Wavelet-HLL_glcm_MaximumProbability

Wavelet-HHL_glcm_Correlation

Wavelet-HHH_glcm_ClusterShade

Wavelet-LLL_glcm_Imc1

Wavelet-HLH_glszm_SmallAreaLowGrayLevelEmphasis

Wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

Wavelet-HLH_glszm_GrayLevelNonUniformity

Wavelet-LLH_glrlm_RunLengthNonUniformity

Original_shape_Maximum2DDiameterRow

matrix; glszm, gray level size zone matrix.

LASSO, least absolute shrinkage and selection operator; glcm, gray level co-occurrence matrix; Imc1, informational measure of correlation 1; glrlm, gray level run length

Texture analysis feature

Shape-based feature

Wavelet-LHH_firstorder_Kurtosis

Original_shape_Maximum2DDiameterSlice

First-order statistical feature Wavelet-HHL_firstorder_Median

Original_firstorder_Median

First-order statistical feature

Each neck node level

Total neck node level

Extracted Features after LASSO logistic regression analysis

Table 2. Extracted features after the least absolute shrinkage and selection of operator logistic regression analysis.

Precision

Accuracy

0.63

0.71

0.59

0.67

0.64

0.71

0.80

0.74

0.85

0.81

Model

kNN

SVM

CART

RF

Ada

kNN + SMOTE

SVM + SMOTE

CART + SMOTE

RF + SMOTE

Ada + SMOTE

0.77

0.82

0.70

0.76

0.68

0.60

0.63

0.56

0.69

0.59

Recall

0.90

0.92

0.77

0.84

0.78

0.67

0.75

0.61

0.72

0.60

AUC

Ada + SMOTE

RF + SMOTE

CART + SMOTE

SVM + SMOTE

kNN + SMOTE

Ada

RF

CART

SVM

kNN

Model

Each neck node level

0.86

0.92

0.75

0.96

0.75

0.65

0.70

0.58

0.55

0.42

Accuracy

0.91

0.95

0.77

0.96

0.79

0.85

0.84

0.85

0.85

0.83

Precision

0.83

0.89

0.73

0.95

0.73

0.60

0.66

0.55

0.53

0.45

Recall

random forest; Ada, Ada Boost; SMOTE, synthetic minority oversampling technique

AUC, area under the curve; kNN, k-nearest neighbor; SVM, support vector machine; CART, classification and regression trees; RF,

0.88

0.88

0.83

0.86

0.78

0.79

0.78

0.77

0.77

0.79

Total neck node level

Table 3. Prediction performance of all models with or without the synthetic minority oversampling technique.

0.93

0.97

0.82

0.98

0.80

0.65

0.65

0.58

0.54

0.61

AUC

782

145

16878

64

116

1402

161

Bur AM et al29

Shan J et al30

Kwak MS et al31

Forghani R et al14

Yuan Y et al15

Zhong YW et al16

This study

CT (neck node level)

CT (primary tumor)

MRI (primary tumor)

CT (primary tumor)

Clinicopathologic data

Clinicopathologic data

Clinicopathologic data

Data

SVM + SMOTE

cNRAD99

Naïve Bayes

Random forest

XGBoost

SVM

Decision forest

Model

0.96

0.88

0.74

0.88

0.95

NA

NA

Accuracy

0.98

0.94

0.80

NA

0.96

0.96

0.84

AUC

0.96

0.85

0.63

0.91

0.92

Sensitivity

imaging; SMOTE, synthetic minority oversampling technique

0.95

0.91

0.82

0.67

0.86

0.88

0.58

Specificity

AUC, area under the curve; NA, not available; SVM, support vector machine; CT, computed tomography; MRI, magnetic resonance

Table 4. Best prediction performance in other studies

IVa

III

II

Ib

Ia

Caudal edge of cricoid cartilage

hyoid bone

Caudal edge of the body of the

process of C1

Caudal edge of the lateral

m.

gland; anteriorly, mylo-hyoid

Cranial edge of submandibular

Mylo-hyoid m.

Cranial

Caudal

manubrium

2 cm cranial to sternal

Caudal edge of cricoid cartilage

hyoid bone

Caudal edge of the body of the

caudal)/platysma m.

(whichever is more

edge of submandibular gland

mandible; alternatively caudal

hyoid bone and caudal edge of

Plane through caudal edge of

anterior belly of digastric mm)

Platysma m. (caudal edge of the

Table 1. Node levels Ia, Ib, II, III, and IVa.

(cranially)/body of

sternocleidomastoid m.

Anterior edge of

thyro-hyoid m.

m./posterior third of

sternocleidomastoid

Anterior edge of

digastric m.

edge of posterior belly of

submandibular gland/posterior

Posterior edge of the

Symphysis menti

Symphysis menti

Anterior

(cranially)/scalenius mm.

sternocleidomastoid m.

Posterior edge of

sternocleidomastoid m.

Posterior edge of

sternocleidomastoid m.

Posterior edge of

digastric m. (cranially)

(caudally)/posterior belly of

submandibular gland

Posterior edge of

m.

Body of hyoid bone/mylo-hyoid

Posterior

(cranially)/lateral edge of

sternocleidomastoid m.

Deep (medial) surface of

sternocleidomastoid m.

Deep (medial) surface of

digastric m.

gland/posterior belly of

m./platysma m./parotid

sternocleidomastoid

Deep (medial) surface of

(posteriorly)

(caudal)/medial pterygoid m.

edge/platysma m.

mandible down to caudal

Medial aspect (innerside) of

digastric m.

Medial edge of ant. belly of

Lateral

gland/scalenius mm.

artery/lateral edge of thyroid

Medial edge of common carotid

artery/scalenius mm.

Medial edge of common carotid

artery/scalenius m.

Medial edge of internal carotid

belly of digastric m. (cranially)

digastric m. (caudally)/posterior

Lateral edge of ant. belly of

NA

Medial

NA, not available.

(caudally)

sternocleidomastoid m.

(caudally)

(caudally)

sternocleidomastoid m.

(caudally)

sternocleidomastoid m.

(cranially)/medial edge of

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る