リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pharmacological Characterization of Drug Candidates Targeting Receptors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pharmacological Characterization of Drug Candidates Targeting Receptors

小山, 亮吉 筑波大学 DOI:10.15068/0002008136

2023.09.04

概要

RORα, β, and γ constitute a subfamily of the NR superfamily [24]. As an isoform of RORγ,
RORγt shares identical DBD and LBD sequences with RORγ [25]. RORγt is expressed in several
immune cell types, such as CD4+ Th17 cells, and is necessary for the proliferation and
functionality of Th17 cells [26]. ...

この論文で使われている画像

参考文献

1.

Overington, J.P., B. Al-Lazikani, and A.L. Hopkins, How many drug targets are there?

Nature Reviews Drug Discovery, 2006. 5(12): p. 993-996.

2.

Christopoulos, A., Allosteric binding sites on cell-surface receptors: novel targets for

drug discovery. Nature Reviews Drug Discovery, 2002. 1(3): p. 198-210.

3.

Kenakin, T. and L.J. Miller, Seven transmembrane receptors as shapeshifting proteins:

the impact of allosteric modulation and functional selectivity on new drug discovery.

Pharmacol Rev, 2010. 62(2): p. 265-304.

4.

Kininis, M. and W.L. Kraus, A global view of transcriptional regulation by nuclear

receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept

Signal, 2008. 6: p. e005.

5.

Gustafsson, J.-A., Historical overview of nuclear receptors. The Journal of Steroid

Biochemistry and Molecular Biology, 2016. 157: p. 3-6.

6.

Govindan, M.V., et al., Cloning of the human glucocorticoid receptor cDNA. Nucleic

Acids Res, 1985. 13(23): p. 8293-304.

7.

Weikum, E.R., X. Liu, and E.A. Ortlund, The nuclear receptor superfamily: A structural

perspective. Protein Sci, 2018. 27(11): p. 1876-1892.

8.

Kumar, R. and E.B. Thompson, Transactivation functions of the N-terminal domains of

nuclear hormone receptors: protein folding and coactivator interactions. Mol Endocrinol,

2003. 17(1): p. 1-10.

9.

Moras, D. and H. Gronemeyer, The nuclear receptor ligand-binding domain: structure

and function. Curr Opin Cell Biol, 1998. 10(3): p. 384-91.

10.

Acevedo, M.L. and W.L. Kraus, Transcriptional activation by nuclear receptors. Essays

Biochem, 2004. 40: p. 73-88.

11.

Mazaira, G.I., et al., The Nuclear Receptor Field: A Historical Overview and Future

Challenges. Nucl Receptor Res, 2018. 5.

12.

Mullican, S.E., J.R. Dispirito, and M.A. Lazar, The orphan nuclear receptors at their 25year reunion. J Mol Endocrinol, 2013. 51(3): p. T115-40.

13.

Evans, R.M. and D.J. Mangelsdorf, Nuclear Receptors, RXR, and the Big Bang. Cell,

2014. 157(1): p. 255-66.

14.

Nanduri, R., et al., ONRLDB--manually curated database of experimentally validated

ligands for orphan nuclear receptors: insights into new drug discovery. Database

(Oxford), 2015.

15.

Rajagopal, S., K. Rajagopal, and R.J. Lefkowitz, Teaching old receptors new tricks:

biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 2010. 9(5): p.

64

373-386.

16.

Katritch, V., V. Cherezov, and R.C. Stevens, Structure-function of the G protein-coupled

receptor superfamily. Annu Rev Pharmacol Toxicol, 2013. 53: p. 531-56.

17.

Yang, D., et al., G protein-coupled receptors: structure- and function-based drug

discovery. Signal Transduct Target Ther, 2021. 6(1): p. 7.

18.

Wettschureck, N. and S. Offermanns, Mammalian G Proteins and Their Cell Type

Specific Functions. Physiological Reviews, 2005. 85(4): p. 1159-1204.

19.

Pedro, M.P., K. Lund, and R. Iglesias-Bartolome, The landscape of GPCR signaling in

the regulation of epidermal stem cell fate and skin homeostasis. STEM CELLS, 2020.

38(12): p. 1520-1531.

20.

Siehler, S., G12/13-dependent signaling of G-protein-coupled receptors: disease context

and impact on drug discovery. Expert Opin Drug Discov, 2007. 2(12): p. 1591-604.

21.

Hilger, D., M. Masureel, and B.K. Kobilka, Structure and dynamics of GPCR signaling

complexes. Nat Struct Mol Biol, 2018. 25(1): p. 4-12.

22.

Mohan, M.L., et al., G-protein coupled receptor resensitization-appreciating the

balancing act of receptor function. Curr Mol Pharmacol, 2012.

23.

Martínez-Morales, J.C., et al., Cell Trafficking and Function of G Protein-coupled

Receptors. Arch Med Res, 2022. 53(5): p. 451-460.

24.

Jetten, A.M., Retinoid-Related Orphan Receptors (RORs): Critical Roles in Development,

Immunity, Circadian Rhythm, and Cellular Metabolism. Nuclear Receptor Signaling,

2009;7:e003.

25.

He, Y.-W., et al., RORgammat, a Novel Isoform of an Orphan Receptor, Negatively

Regulates Fas Ligand Expression and IL-2 Production in T Cells. Immunity, 1998. 9(6):

p. 797-806.

26.

Ghoreschi, K., et al., T helper 17 cell heterogeneity and pathogenicity in autoimmune

disease. Trends in Immunology, 2011. 32(9): p. 395-401.

27.

Korn, T., et al., IL-17 and Th17 Cells. Annual Review of Immunology, 2009. 27(1): p.

485-517.

28.

Littman, D.R. and A.Y. Rudensky, Th17 and Regulatory T Cells in Mediating and

Restraining Inflammation. Cell, 2010. 140(6): p. 845-858.

29.

Yang, X.O., et al., T Helper 17 Lineage Differentiation Is Programmed by Orphan

Nuclear Receptors RORalpha and RORgamma. Immunity, 2008. 28(1): p. 29-39.

30.

Chang, M.R., H. Rosen, and P.R. Griffin, RORs in autoimmune disease. Curr Top

Microbiol Immunol, 2014. 378: p. 171-82.

31.

Eberl, G. and D.R. Littman, The role of the nuclear hormone receptor RORγt in the

development of lymph nodes and Peyer's patches. Immunological Reviews, 2003. 195(1):

65

p. 81-90.

32.

Țiburcă, L., et al., The Treatment with Interleukin 17 Inhibitors and Immune-Mediated

Inflammatory Diseases. Current Issues in Molecular Biology, 2022. 44(5): p. 1851-1866.

33.

Kumar, N., et al., The Benzenesulfoamide T0901317 Is a Novel Retinoic Acid ReceptorRelated Orphan Receptor-α/γ Inverse Agonist. Molecular Pharmacology, 2010. 77(2): p.

228-236.

34.

Kojetin, D.J. and T.P. Burris, REV-ERB and ROR nuclear receptors as drug targets.

Nature Reviews Drug Discovery, 2014. 13(3): p. 197-216.

35.

Kallen, J.A., et al., X-Ray Structure of the hRORalpha LBD at 1.63 A: Structural and

Functional Data that Cholesterol or a Cholesterol Derivative Is the Natural Ligand of

RORalpha. Structure, 2002. 10(12): p. 1697-1707.

36.

Stehlin, C., et al., X-ray structure of the orphan nuclear receptor RORβ ligand-binding

domain in the active conformation. The EMBO Journal, 2001. 20(21): p. 5822-5831.

37.

Jin, L., et al., Structural Basis for Hydroxycholesterols as Natural Ligands of Orphan

Nuclear Receptor RORγ. Molecular Endocrinology, 2010. 24(5): p. 923-929.

38.

Soroosh, P., et al., Oxysterols are agonist ligands of RORγt and drive Th17 cell

differentiation. Proc Natl Acad Sci U S A, 2014. 111(33): p. 12163-8.

39.

Hu, X., et al., Sterol metabolism controls TH17 differentiation by generating endogenous

RORγ agonists. Nature Chemical Biology, 2015. 11(2): p. 141-147.

40.

Santori, Fabio R., et al., Identification of Natural RORγ Ligands that Regulate the

Development of Lymphoid Cells. Cell Metabolism, 2015. 21(2): p. 286-298.

41.

Wang, Y., et al., A second class of nuclear receptors for oxysterols: Regulation of RORα

and RORγ activity by 24S-hydroxycholesterol (cerebrosterol). Biochimica et Biophysica

Acta (BBA) - Molecular and Cell Biology of Lipids, 2010. 1801(8): p. 917-923.

42.

Wang, Y., et al., Modulation of Retinoic Acid Receptor-related Orphan Receptor alpha

and gamma Activity by 7-Oxygenated Sterol Ligands. Journal of Biological Chemistry,

2010. 285(7): p. 5013-5025.

43.

Kono, M., et al., Discovery of [cis-3-({(5R)-5-[(7-Fluoro-1,1-dimethyl-2,3-dihydro-1Hinden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5H)yl}carbonyl)cyclobutyl]acetic Acid (TAK-828F) as a Potent, Selective, and Orally

Available Novel Retinoic Acid Receptor-Related Orphan Receptor γt Inverse Agonist.

Journal of Medicinal Chemistry, 2018. 61(7): p. 2973-2988.

44.

Shibata, A., et al., Pharmacological inhibitory profile of TAK-828F, a potent and selective

orally available RORγt inverse agonist. Biochemical Pharmacology, 2018. 150: p. 35-45.

45.

Igaki, K., et al., Pharmacological Evaluation of TAK-828F, a Novel Orally Available

RORγt Inverse Agonist, on Murine Colitis Model. Inflammation, 2019. 42(1): p. 91-102.

66

46.

Ichiyama, K., et al., Foxp3 Inhibits RORgammat-mediated IL-17A mRNA Transcription

through Direct Interaction with RORgammat. Journal of Biological Chemistry, 2008.

283(25): p. 17003-17008.

47.

Thales, K., et al., Nuclear Receptor Modulators — Current Approaches and Future

Perspectives, in Drug Discovery and Development, V. Omboon and O. Suleiman, Editors.

2015, IntechOpen: Rijeka. p. Ch. 5.

48.

Fauber, B.P., et al., Structure-based design of substituted hexafluoroisopropanolarylsulfonamides as modulators of RORc. Bioorganic & Medicinal Chemistry Letters,

2013. 23(24): p. 6604-6609.

49.

Pantoliano, M.W., et al., High-density miniaturized thermal shift assays as a general

strategy for drug discovery. J Biomol Screen, 2001. 6(6): p. 429-40.

50.

Shirai, J., et al., Discovery of orally efficacious RORγt inverse agonists, part 1:

Identification of novel phenylglycinamides as lead scaffolds. Bioorg Med Chem, 2018.

26(2): p. 483-500.

51.

Bitsch, F., et al., Identification of natural ligands of retinoic acid receptor-related orphan

receptor alpha ligand-binding domain expressed in Sf9 cells--a mass spectrometry

approach. Anal Biochem, 2003. 323(1): p. 139-49.

52.

Tripathi, N.K. and A. Shrivastava, Recent Developments in Bioprocessing of

Recombinant Proteins: Expression Hosts and Process Development. Frontiers in

Bioengineering and Biotechnology, 2019. 7.

53.

Vasseur, L., et al., Importance of the Choice of a Recombinant System to Produce Large

Amounts of Functional Membrane Protein hERG. Int J Mol Sci, 2019. 20(13).

54.

Liu, F., et al., Use of baculovirus expression system for generation of virus-like particles:

successes and challenges. Protein Expr Purif, 2013. 90(2): p. 104-16.

55.

Zhang, Y., et al., ROR nuclear receptors: structures, related diseases, and drug discovery.

Acta Pharmacol Sin, 2015. 36(1): p. 71-87.

56.

Dhe-Paganon, S., et al., Crystal structure of the HNF4 alpha ligand binding domain in

complex with endogenous fatty acid ligand. J Biol Chem, 2002. 277(41): p. 37973-6.

57.

Wisely, G.B., et al., Hepatocyte nuclear factor 4 is a transcription factor that

constitutively binds fatty acids. Structure, 2002. 10(9): p. 1225-34.

58.

Briscoe, C.P., et al., The orphan G protein-coupled receptor GPR40 is activated by

medium and long chain fatty acids. J Biol Chem, 2003. 278(13): p. 11303-11.

59.

Itoh, Y., et al., Free fatty acids regulate insulin secretion from pancreatic beta cells

through GPR40. Nature, 2003. 422(6928): p. 173-6.

60.

Mancini, A.D. and V. Poitout, The fatty acid receptor FFA1/GPR40 a decade later: how

much do we know? Trends Endocrinol Metab, 2013. 24(8): p. 398-407.

67

61.

Pais, R., F.M. Gribble, and F. Reimann, Stimulation of incretin secreting cells.

Therapeutic advances in endocrinology and metabolism, 2016. 7(1): p. 24-42.

62.

Tsujihata, Y., et al., TAK-875, an Orally Available G Protein-Coupled Receptor 40/Free

Fatty Acid Receptor 1 Agonist, Enhances Glucose-Dependent Insulin Secretion and

Improves Both Postprandial and Fasting Hyperglycemia in Type 2 Diabetic Rats. Journal

of Pharmacology and Experimental Therapeutics, 2011. 339(1): p. 228-237.

63.

Burant, C.F., et al., TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a

phase 2, randomised, double-blind, placebo-controlled trial. Lancet, 2012. 379(9824): p.

1403-11.

64.

Kaku, K., et al., Long-term safety and efficacy of fasiglifam (TAK-875), a G-proteincoupled receptor 40 agonist, as monotherapy and combination therapy in Japanese

patients with type 2 diabetes: a 52-week open-label phase III study. Diabetes Obes Metab,

2016. 18(9): p. 925-9.

65.

Lin, D.C., et al., Identification and pharmacological characterization of multiple

allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol, 2012. 82(5): p.

843-59.

66.

Li, Z., et al., Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs

in preclinical to phase II clinical development. Expert opinion on investigational drugs,

2016. 25(8): p. 871-890.

67.

Li, Z., Z. Zhou, and L. Zhang, Current status of GPR40/FFAR1 modulators in medicinal

chemistry (2016–2019): a patent review. Expert Opinion on Therapeutic Patents, 2020.

30(1): p. 27-38.

68.

Lu, J., et al., Structural basis for the cooperative allosteric activation of the free fatty acid

receptor GPR40. Nat Struct Mol Biol, 2017. 24(7): p. 570-577.

69.

Ho, J.D., et al., Structural basis for GPR40 allosteric agonism and incretin stimulation.

Nat Commun, 2018. 9(1): p. 1645.

70.

Hauge, M., et al., GPR40 (FFAR1) - Combined Gs and Gq signaling in vitro is associated

with robust incretin secretagogue action ex vivo and in vivo. Mol Metab, 2015. 4(1): p.

3-14.

71.

Rives, M.L., et al., GPR40-Mediated Galpha12 Activation by Allosteric Full Agonists

Highly Efficacious at Potentiating Glucose-Stimulated Insulin Secretion in Human Islets.

Mol Pharmacol, 2018. 93(6): p. 581-591.

72.

Defossa, E. and M. Wagner, Recent developments in the discovery of FFA1 receptor

agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett,

2014. 24(14): p. 2991-3000.

73.

Li, Z., et al., Free Fatty Acid Receptor 1 (FFAR1) as an Emerging Therapeutic Target for

68

Type 2 Diabetes Mellitus: Recent Progress and Prevailing Challenges. Med Res Rev,

2018. 38(2): p. 381-425.

74.

Kahn, S.E., et al., Glycemic durability of rosiglitazone, metformin, or glyburide

monotherapy. N Engl J Med, 2006. 355(23): p. 2427-43.

75.

Drake, M.T., S.K. Shenoy, and R.J. Lefkowitz, Trafficking of G protein-coupled receptors.

Circ Res, 2006. 99(6): p. 570-82.

76.

Kelly, E., C.P. Bailey, and G. Henderson, Agonist-selective mechanisms of GPCR

desensitization. Br J Pharmacol, 2008. 153 Suppl 1: p. S379-88.

77.

Callander, G.E., W.G. Thomas, and R.A. Bathgate, Prolonged RXFP1 and RXFP2

signaling can be explained by poor internalization and a lack of beta-arrestin recruitment.

Am J Physiol Cell Physiol, 2009. 296(5): p. C1058-66.

78.

Tirupula, K.C., et al., Atypical signaling and functional desensitization response of MAS

receptor to peptide ligands. PLoS One, 2014. 9(7): p. e103520.

79.

Chen, Y., et al., A selective GPR40 (FFAR1) agonist LY2881835 provides immediate and

durable glucose control in rodent models of type 2 diabetes. Pharmacol Res Perspect,

2016. 4(6): p. e00278.

80.

Chen, Y., et al., HWL-088, a new potent free fatty acid receptor 1 (FFAR1) agonist,

improves glucolipid metabolism and acts additively with metformin in ob/ob diabetic

mice. Br J Pharmacol, 2020.

81.

Yabuki, C., et al., A novel antidiabetic drug, fasiglifam/TAK-875, acts as an agoallosteric modulator of FFAR1. PLoS One, 2013. 8(10): p. e76280.

82.

Portha B, M.J., Cuzin-Tourrel C, Bailbe D, Giroix M, Serradas P, Dolz M and Kergoat

M, Neonatally streptozotocin-induced (n-STZ) diabetic rats: a family of type 2 diabetes

models. Animal Models of Diabetes, 2007.

83.

Levetan, C., Oral antidiabetic agents in type 2 diabetes. Current Medical Research and

Opinion, 2007. 23: p. 945 - 952.

84.

Brown, S.P., et al., Discovery of AM-1638: A Potent and Orally Bioavailable

GPR40/FFA1 Full Agonist. ACS Med Chem Lett, 2012. 3(9): p. 726-30.

85.

Ueno, H., et al., SCO-267, a GPR40 Full Agonist, Improves Glycemic and Body Weight

Control in Rat Models of Diabetes and Obesity. J Pharmacol Exp Ther, 2019. 370(2): p.

172-181.

86.

Srivastava, A., et al., High-resolution structure of the human GPR40 receptor bound to

allosteric agonist TAK-875. Nature, 2014. 513(7516): p. 124-7.

87.

Buse, J.B., et al., Effects of exenatide (exendin-4) on glycemic control over 30 weeks in

sulfonylurea-treated patients with type 2 diabetes. Diabetes Care, 2004. 27(11): p. 262835.

69

88.

Drucker, D.J., et al., Exenatide once weekly versus twice daily for the treatment of type 2

diabetes: a randomised, open-label, non-inferiority study. Lancet, 2008. 372(9645): p.

1240-50.

89.

Ito, R., et al., TAK-875, a GPR40/FFAR1 agonist, in combination with metformin prevents

progression of diabetes and β-cell dysfunction in Zucker diabetic fatty rats. British journal

of pharmacology, 2013. 170(3): p. 568-580.

90.

Sandoval, D.A. and D.A. D'Alessio, Physiology of proglucagon peptides: role of

glucagon and GLP-1 in health and disease. Physiol Rev, 2015. 95(2): p. 513-48.

91.

Bonner-Weir, S., et al., Responses of Neonatal Rat Islets to Streptozotocin: Limited BCell Regeneration and Hyperglycemia. Diabetes, 1981. 30(1): p. 64-69.

92.

Kaiser, N., G. Leibowitz, and R. Nesher, Glucotoxicity and beta-cell failure in type 2

diabetes mellitus. J Pediatr Endocrinol Metab, 2003. 16(1): p. 5-22.

93.

Du, T., et al., Vincamine as a GPR40 agonist improves glucose homeostasis in type 2

diabetic mice. Journal of Endocrinology, 2019. 240(2): p. 195-214.

94.

Verma, M.K., et al., Activation of GPR40 attenuates chronic inflammation induced

impact on pancreatic β-cells health and function. BMC Cell Biology, 2014. 15(1): p. 24.

95.

Wootten, D., et al., Allosteric modulation of endogenous metabolites as an avenue for

drug discovery. Mol Pharmacol, 2012. 82(2): p. 281-90.

96.

Nakamura, Y., et al., Pharmacological evaluation of TAK-828F, a novel orally available

RORγt inverse agonist, on murine chronic experimental autoimmune encephalomyelitis

model. Journal of Neuroimmunology, 2019. 335: p. 577016.

97.

Scheepstra, M., et al., Identification of an allosteric binding site for RORγt inhibition.

Nature Communications, 2015. 6(1): p. 8833.

98.

Saenz, S.A., et al., Small molecule allosteric inhibitors of RORγt block Th17-dependent

inflammation and associated gene expression in vivo. PLoS One, 2021. 16(11): p.

e0248034.

99.

Rutz, S., et al., Post-translational regulation of RORγt-A therapeutic target for the

modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine

Growth Factor Rev, 2016. 30: p. 1-17.

100.

Furuyama, K., et al., RORγt+Foxp3+ regulatory T cells in the regulation of autoimmune

arthritis. Clin Exp Immunol, 2022. 207(2): p. 176-187.

101.

Zou, H., et al., Nuclear receptor RORγ inverse agonists/antagonists display tissue- and

gene-context selectivity through distinct activities in altering chromatin accessibility and

master regulator SREBP2 occupancy. Pharmacological Research, 2022. 182: p. 106324.

102.

Gege, C., Retinoic acid-related orphan receptor gamma t (RORγt) inverse

agonists/antagonists for the treatment of inflammatory diseases – where are we

70

presently? Expert Opinion on Drug Discovery, 2021. 16(12): p. 1517-1535.

103.

Sun, Z., et al., Requirement for RORgamma in thymocyte survival and lymphoid organ

development. Science, 2000. 288(5475): p. 2369-73.

104.

Haggerty, H.G., et al., Thymic Lymphomas in a 6-Month rasH2-Tg Mouse

Carcinogenicity Study With the RORγt Inverse Agonist, BMS-986251. Toxicol Sci, 2021.

183(1): p. 93-104.

105.

Arab, J.P., M. Arrese, and M. Trauner, Recent Insights into the Pathogenesis of

Nonalcoholic Fatty Liver Disease. Annu Rev Pathol, 2018. 13: p. 321-350.

106.

Ookawara, M., et al., The GPR40 full agonist SCO-267 improves liver parameters in a

mouse model of nonalcoholic fatty liver disease without affecting glucose or body weight.

Journal of Pharmacology and Experimental Therapeutics, 2020. 375(1):p. 21-27.

107.

Nishizaki, H., et al., SCO-267, a GPR40 Full Agonist, Stimulates Islet and Gut Hormone

Secretion and Improves Glycemic Control in Humans. Diabetes, 2021. 70(10): p. 23642376.

108.

Krupnick, J.G. and J.L. Benovic, The role of receptor kinases and arrestins in G proteincoupled receptor regulation. Annu Rev Pharmacol Toxicol, 1998. 38: p. 289-319.

109.

Lefkowitz, R.J., A Brief History of G-Protein Coupled Receptors (Nobel Lecture).

Angewandte Chemie International Edition, 2013. 52(25): p. 6366-6378.

110.

Tobin, A.B., G-protein-coupled receptor phosphorylation: where, when and by whom.

British Journal of Pharmacology, 2008. 153(S1): p. S167-S176.

111.

Prihandoko, R., et al., Distinct Phosphorylation Clusters Determine the Signaling

Outcome of Free Fatty Acid Receptor 4/G Protein–Coupled Receptor 120. Molecular

Pharmacology, 2016. 89(5): p. 505-520.

112.

Rajagopal, S., K. Rajagopal, and R.J. Lefkowitz, Teaching old receptors new tricks:

biasing seven-transmembrane receptors. Nat Rev Drug Discov, 2010. 9(5): p. 373-86.

113.

Kohout, T.A., et al., Differential desensitization, receptor phosphorylation, beta-arrestin

recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine

receptor 7. J Biol Chem, 2004. 279(22): p. 23214-22.

114.

Wang, G., Z. Wei, and G. Wu, Role of Rab GTPases in the export trafficking of G proteincoupled receptors. Small GTPases, 2018. 9(1-2): p. 130-135.

115.

Schwartz, S.L., et al., Rab GTPases at a glance. Journal of Cell Science, 2007. 120(22):

p. 3905-3910.

116.

Irannejad, R., et al., Conformational biosensors reveal GPCR signalling from endosomes.

Nature, 2013. 495(7442): p. 534-538.

117.

Flores-Espinoza, E., et al., Effect of docosahexaenoic acid, phorbol myristate acetate,

and insulin on the interaction of the FFA4 (short isoform) receptor with Rab proteins.

71

European Journal of Pharmacology, 2020. 889: p. 173595.

118.

Qian, J., et al., Differential requirements of arrestin-3 and clathrin for ligand-dependent

and -independent internalization of human G protein-coupled receptor 40. Cell Signal,

2014. 26(11): p. 2412-23.

72

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る