リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「RNA-based cooperative protein labeling that permits direct monitoring of the intracellular concentration change of an endogenous protein」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

RNA-based cooperative protein labeling that permits direct monitoring of the intracellular concentration change of an endogenous protein

Pe, Kathleen Beverly Alog Yatsuzuka, Kenji Hakariya, Hayase Kida, Tomoki Katsuda, Yousuke Fukuda, Masatora Sato, Shin-ichi 京都大学 DOI:10.1093/nar/gkab839

2021.12.16

概要

Imaging the dynamics of proteins in living cells is a powerful means for understanding cellular functions at a deeper level. Here, we report a versatile method for spatiotemporal imaging of specific endogenous proteins in living mammalian cells. The method employs a bifunctional aptamer capable of selective protein recognition and fluorescent probe-binding, which is induced only when the aptamer specifically binds to its target protein. An aptamer for β-actin protein preferentially recognizes its monomer forms over filamentous forms, resulting in selective G-actin staining in both fixed and living cells. Through actin-drug treatment, the method permitted direct monitoring of the intracellular concentration change of endogenous G-actin. This protein-labeling method, which is highly selective and non-covalent, provides rich insights into the study of spatiotemporal protein dynamics in living cells.

この論文で使われている画像

参考文献

1. Chalfie,M., Tu,Y., Euskirchen,G., Ward,W.W. and Prasher,D.C.

(1994) Green fluorescent protein as a marker for gene expression.

Science, 263, 802–805.

2. Cubitt,A.B., Heim,R., Adams,S.R., Boyd,A.E., Gross,L.A. and

Tsien,R.Y. (1995) Understanding, improving and using green

fluorescent proteins. Trends Biochem. Sci., 20, 448–455.

3. Cabantous,S., Terwilliger,T.C. and Waldo,G.S. (2005) Protein tagging

and detection with engineered self-assembling fragments of green

fluorescent protein. Nat. Biotechnol., 23, 102–107.

4. Van Engelenburg,S.B. and Palmer,A.E. (2010) Imaging type-III

secretion reveals dynamics and spatial segregation of Salmonella

effectors. Nat. Methods, 7, 325–330.

5. Kamiyama,D., Sekine,S., Barsi-Rhyne,B., Hu,J., Chen,B.,

Gilbert,L.A., Ishikawa,H., Leonetti,M.D., Marshall,W.F.,

Weissman,J.S. et al. (2016) Versatile protein tagging in cells with split

fluorescent protein. Nat. Commun., 7, 11046.

6. Schmidt,S., Adjobo-Hermans,M.J., Wallbrecher,R., Verdurmen,W.P.,

Bovee-Geurts,P.H., van Oostrum,J., Milletti,F., Enderle,T. and

Brock,R. (2015) Detecting cytosolic peptide delivery with the GFP

complementation assay in the low micromolar range. Angew. Chem.

Int. Ed., 54, 15105–15108.

7. Feinberg,E.H., Vanhoven,M.K., Bendesky,A., Wang,G., Fetter,R.D.,

Shen,K. and Bargmann,C.I. (2008) GFP Reconstitution Across

Synaptic Partners (GRASP) defines cell contacts and synapses in

living nervous systems. Neuron, 57, 353–363.

8. Macpherson,L.J., Zaharieva,E.E., Kearney,P.J., Alpert,M.H.,

Lin,T.Y., Turan,Z., Lee,C.H. and Gallio,M. (2015) Dynamic labelling

of neural connections in multiple colours by trans-synaptic

fluorescence complementation. Nat. Commun., 6, 10024.

9. To,T.L., Piggott,B.J., Makhijani,K., Yu,D., Jan,Y.N. and Shu,X.

(2015) Rationally designed fluorogenic protease reporter visualizes

spatiotemporal dynamics of apoptosis in vivo. Proc. Natl. Acad. Sci.

U.S.A., 112, 3338–3343.

10. Kim,Y.E., Kim,Y.N., Kim,J.A., Kim,H.M. and Jung,Y. (2015) Green

fluorescent protein nanopolygons as monodisperse supramolecular

assemblies of functional proteins with defined valency. Nat.

Commun., 6, 7134.

11. Feng,S., Sekine,S., Pessino,V., Li,H., Leonetti,M.D. and Huang,B.

(2017) Improved split fluorescent proteins for endogenous protein

labeling. Nat. Commun., 8, 370.

12. Griffin,B.A., Adams,S.R. and Tsien,R.Y. (1998) Specific covalent

labeling of recombinant protein molecules inside live cells. Science,

281, 269–272.

13. Adams,S.R., Campbell,R.E., Gross,L.A., Martin,B.R.,

Walkup,G.K., Yao,Y., Llopis,J. and Tsien,R.Y. (2002) New

biarsenical ligands and tetracysteine motifs for protein labeling in

vitro and in vivo: synthesis and biological applications. J. Am. Chem.

Soc., 124, 6063–6076.

14. Hirayama,S., Hori,Y., Benedek,Z., Suzuki,T. and Kikuchi,K. (2016)

Fluorogenic probes reveal a role of GLUT4 N-glycosylation in

intracellular trafficking. Nat. Chem. Biol., 12, 853–859.

15. Hori,Y., Ueno,H., Mizukami,S. and Kikuchi,K. (2009) Photoactive

yellow protein-based protein labeling system with turn-on

fluorescence intensity. J. Am. Chem. Soc., 131, 16610–16611.

16. Hori,Y., Hirayama,S., Sato,M. and Kikuchi,K. (2015) Redesign of a

fluorogenic labeling system to improve surface charge, brightness, and

binding kinetics for imaging the functional localization of

bromodomains. Angew. Chem. Int. Ed., 54, 14368–14371.

17. Matsuda,T. and Oinuma,I. (2019) Optimized

CRISPR/Cas9-mediated in vivo genome engineering applicable to

monitoring dynamics of endogenous proteins in the mouse neural

tissues. Sci. Rep., 9, 11309.

18. Swulius,M.T. and Jensen,G.J. (2012) The helical MreB cytoskeleton

in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal

yellow fluorescent protein tag. J. Bacteriol., 194, 6382–6386.

19. Huang,L., Pike,D., Sleat,D.E., Nanda,V. and Lobel,P. (2014)

Potential pitfalls and solutions for use of fluorescent fusion proteins

to study the lysosome. PLoS One, 9, e88893.

20. Wakayama,S., Kiyonaka,S., Arai,I., Kakegawa,W., Matsuda,S.,

Ibata,K., Nemoto,Y.L., Kusumi,A. and Yuzaki,M., (2017) Hamachi,

I. Chemical labelling for visualizing native AMPA receptors in live

neurons. Nat. Commun., 8, 14850.

21. Tsukiji,S., Miyagawa,M., Takaoka,Y., Tamura,T. and Hamachi,I.

(2009) Ligand-directed tosyl chemistry for protein labeling in vivo.

Nat. Chem. Biol., 5, 341–343.

22. Tamura,T., Ueda,T., Goto,T., Tsukidate,T., Shapira,Y., Nishikawa,Y.

and Fujisawa,A., (2018) Hamachi, I. Rapid labelling and covalent

inhibition of intra-cellular native proteins using ligand-directed

N-acyl-N-alkyl sulfonamide. Nat. Commun., 9, 1870.

23. Tamura,T., Kioi,Y., Miki,T., Tsukiji,S. and Hamachi,I. (2013)

Fluorophore labeling of native FKBP12 by ligand-directed tosyl

chemistry allows detection of its molecular interactions in vitro and

in living cells. J. Am. Chem. Soc., 135, 6782–6785.

24. Dai,S.Y. and Yang,D. (2020) A visible and near-infrared light

activatable diazocoumarin probe for fluorogenic protein labeling in

living cells. J. Am. Chem. Soc., 142, 17156–17166.

25. Liu,J., Zhang,P., Yang,X., Wang,K., Guo,Q., Huang,J. and Li,W.

(2014) Aptamer-mediated indirect quantum dot labeling and

fluorescent imaging of target proteins in living cells. Nanotechnology,

25, 505520.

26. Kaiser,P.D., Maier,J., Traenkle,B., Emele,F. and Rothbauer,U. (2014)

Recent progress in generating intracellular functional antibody

fragments to target and trace cellular components in living cells.

Biochim. Biophys. Acta., 1844, 1933–1942.

27. Riedl,J., Crevenna,A.H., Kessenbrock,K., Yu,J.H., Neukirchen,D.,

Bista,M., Bradke,F., Jenne,D., Holak,T.A., Werb,Z. et al. (2008)

Lifeact: a versatile marker to visualize F-actin. Nat. Methods, 5,

605–607.

28. Riedl,J., Flynn,K.C., Raducanu,A., G¨artner,F., Beck,G., Bosl,M.,

Bradke,F., Massberg,S., Aszodi,A., Sixt,M. et al. (2010) Lifeact mice

for studying F-actin dynamics. Nat. Methods, 7, 168–169.

29. Keller,B.M., Maier,J., Secker,K.A., Egetemaier,S.M., Parfyonova,Y.,

Rothbauer,U. and Traenkle,B. (2018) Chromobodies to quantify

changes of endogenous protein concentration in living cells. Mol. Cell

Proteomics, 17, 2518–2533.

30. Wang,Lei, M.,T.J., Liu,D.R. and Schultz,P.G. (2000) A new

functional suppressor tRNA/aminoacyl-tRNA synthetase pair for

the in vivo in-corporation of unnatural amino acids into proteins. J.

Am. Chem. Soc., 122, 2.

31. Chin,J.W., Cropp,T.A., Anderson,J.C., Mukherji,M., Zhang,Z. and

Schultz,P.G. (2003) An expanded eukaryotic genetic code. Science,

301, 964–967.

32. Mukai,T., Lajoie,M.J., Englert,M. and Soll,D. (2017) Rewriting the

genetic code. Annu. Rev. Microbiol., 71, 557–577.

Downloaded from https://academic.oup.com/nar/article/49/22/e132/6377398 by Kyoto University user on 30 June 2022

We thank all members of the Uesugi laboratory (Kyoto University), for discussions and experimental assistance. We

also thank N. Watanabe for discussions.

PAGE 10 OF 11

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PAGE 11 OF 11

47. Spector,I., Shochet,N.R., Kashman,Y. and Groweiss,A. (1983)

Latrunculins: novel marine toxins that disrupt microfilament

organization in cultured cells. Science, 219, 493–495.

48. Trendowski,M. (2014) Exploiting the cytoskeletal filaments of

neoplastic cells to potentiate a novel therapeutic approach. Biochim.

Biophys. Acta, 1846, 599–616.

49. Romero,D. (2018) Redefining KRAS activation. Nat. Rev. Clin.

Oncol., 15, 532.

50. Liu,P., Wang,Y. and Li,X. (2019) Targeting the untargetable KRAS in

cancer therapy. Acta Phys. Sin. B, 9, 871–879.

51. Kamal,J.K., Benchaar,S.A., Takamoto,K., Reisler,E. and

Chance,M.R. (2007) Three-dimensional structure of cofilin bound to

monomeric actin derived by structural mass spectrometry data. Proc.

Natl. Acad. Sci. U.S.A., 104, 7910–7915.

52. Schutt,C.E., Myslik,J.C., Rozycki,M.D., Goonesekere,N.C. and

Lindberg,U. (1993) The structure of crystalline profilin-beta-actin.

Nature, 365, 810–816.

53. Kabsch,W., Mannherz,H.G., Suck,D., Pai,E.F. and Holmes,K.C.

(1990) Atomic structure of the actin:DNase I complex. Nature, 347,

37–44.

54. Paavilainen,V.O., Bertling,E., Falck,S. and Lappalainen,P. (2004)

Regulation of cytoskeletal dynamics by actin-monomer-binding

proteins. Trends Cell Biol., 14, 386–394.

55. Yatsuzuka,K., Sato,S., Pe,K.B., Katsuda,Y., Takashima,I.,

Watanabe,M. and Uesugi,M. (2018) Live-cell imaging of multiple

endogenous mRNAs permits the direct observation of RNA granule

dynamics. Chem. Commun., 54, 7151–7154.

56. Morii,T., Hagihara,M., Sato,S. and Makino,K. (2002) In vitro

selection of ATP-binding receptors using a ribonucleopeptide

complex. J. Am. Chem. Soc., 124, 4617–4622.

57. Nakano,S., Fukuda,M., Tamura,T., Sakaguchi,R., Nakata,E. and

Morii,T. (2013) Simultaneous detection of ATP and GTP by

covalently linked fluorescent ribonucleopeptide sensors. J. Am. Chem.

Soc., 135, 3465–3473.

58. Nakano,S., Nakata,E. and Morii,T. (2011) Facile conversion of RNA

aptamers to modular fluorescent sensors with tunable detection

wavelengths. Bioorg. Med. Chem. Lett., 21, 4503–4506.

Downloaded from https://academic.oup.com/nar/article/49/22/e132/6377398 by Kyoto University user on 30 June 2022

33. Murata,A., Sato,S., Kawazoe,Y. and Uesugi,M. (2011)

Small-molecule fluorescent probes for specific RNA targets. Chem.

Commun., 47, 4712–4714.

34. Ellington,A.D. and Szostak,J.W. (1990) In vitro selection of RNA

molecules that bind specific ligands. Nature, 346, 818–822.

35. Green,L.S., Jellinek,D., Bell,C., Beebe,L.A., Feistner,B.D., Gill,S.C.,

Jucker,F.M. and Janji´c,N. (1995) Nuclease-resistant nucleic acid

ligands to vascular permeability factor/vascular endothelial growth

factor. Chem. Biol., 2, 683–695.

36. Shi,H., Hoffman,B.E. and Lis,J.T. (1999) RNA aptamers as effective

protein antagonists in a multicellular organism. Proc. Natl. Acad. Sci.

U.S.A., 96, 10033–10038.

37. Cho,J.S., Lee,Y.J., Shin,K.S., Jeong,S., Park,J. and Lee,S.W. (2004) In

vitro selection of specific RNA aptamers for the NFAT DNA binding

domain. Mol. Cells, 18, 17–23.

38. Hesselberth,J.R., Miller,D., Robertus,J. and Ellington,A.D. (2000) In

vitro selec-tion of RNA molecules that inhibit the activity of ricin

A-chain. J. Biol. Chem., 275, 4937–4942.

39. Gold,L., Polisky,B., Uhlenbeck,O. and Yarus,M., (1995) Diversity of

oligonucleo-tide functions. Annu. Rev. Biochem., 64, 763–797.

40. Wilson,D.S. and Szostak,J.W. (1999) In vitro selection of functional

nucleic acids. Annu. Rev. Biochem., 68, 611–647.

41. Osborne,S.E. and Ellington,A.D., (1997) Nucleic acid selection and

the challenge of combinatorial chemistry. Chem. Rev., 97, 349–370.

42. Sato,S., Watanabe,M., Katsuda,Y., Murata,A., Wang,D.O. and

Uesugi,M. (2015) Live-cell imaging of endogenous mRNAs with a

small molecule. Angew. Chem. Int. Ed., 54, 1855–1858.

43. Melak,M., Plessner,M. and Grosse,R. (2017) Actin visualization at a

glance. J. Cell Sci., 130, 525–530.

44. Wang,K., Feramisco,J.R. and Ash,J.F. (1982) Fluorescent

localization of contrac-tile proteins in tissue culture cells. Methods

Enzymol., 85 Pt B, 514–562.

45. Cramer,L.P., Briggs,L.J. and Dawe,H.R. (2002) Use of fluorescently

labelled de-oxyribonuclease I to spatially measure G-actin levels in

migrating and non-migrating cells. Cell Motil. Cytoskelet., 51, 27–38.

46. Smith,G.F., Ridler,M.A. and Faunch,J.A. (1967) Action of

cytochalasin B on cultured human lymphocytes. Nature, 216,

1134–1135.

Nucleic Acids Research, 2021, Vol. 49, No. 22 e132

...

参考文献をもっと見る