リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「リー症候群における骨障害に対するミトコンドリア機能障害の直接的な影響」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

リー症候群における骨障害に対するミトコンドリア機能障害の直接的な影響

韓, 旭 HAN, XU カン, キョク 九州大学

2020.09.25

概要

Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED (Ctrl-SHED), LS-SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS-SHED than in Ctrl- SHED. Furthermore, the mitochondrial activity of LS-SHED was decreased compared with Ctrl-SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases.

この論文で使われている画像

参考文献

[1] J. Dudek, P. Rehling, M. van der Laan, Mitochondrial protein import: common principles and physiological networks, Biochim. Biophys. Acta - Mol. Cell Res. 1833 (2013) 274e285, http://dx.doi.org/10.1016/j.bbamcr.2012.05.028.

[2] J. Asin-Cayuela, C.M. Gustafsson, Mitochondrial transcription and its regula- tion in mammalian cells, Trends Biochem. Sci. 32 (2007) 111e117, http:// dx.doi.org/10.1016/j.tibs.2007.01.003.

[3] N.J. Lake, M.J. Bird, P. Isohanni, A. Paetau, Leigh syndrome: neuropathology and pathogenesis, J. Neuropathol. Exp. Neurol. 74 (2015) 482e492, http:// dx.doi.org/10.1097/NEN.0000000000000195.

[4] S. DiMauro, Mitochondrial diseases, Biochim. Biophys. Acta - Bioenerg. 1658 (2004) 80e88, http://dx.doi.org/10.1016/j.bbabio.2004.03.014.

[5] S. Parikh, A. Goldstein, A. Karaa, M.K. Koenig, I. Anselm, C. Brunel-Guitton, J. Christodoulou, B.H. Cohen, D. Dimmock, G.M. Enns, M.J. Falk, A. Feigenbaum, R.E. Frye, J. Ganesh, D. Griesemer, R. Haas, R. Horvath, M. Korson, M.C. Kruer, M. Mancuso, S. McCormack, M.J. Raboisson, T. Reimschisel, R. Salvarinova, R.P. Saneto, F. Scaglia, J. Shoffner, P.W. Stacpoole, C.M. Sue, M. Tarnopolsky, C. Van Karnebeek, L.A. Wolfe, Z.Z. Cunningham, S. Rahman, P.F. Chinnery, Patient care standards for primary mitochondrial disease: a consensus state- ment from the Mitochondrial Medicine Society, Genet. Med. (2017), http:// dx.doi.org/10.1038/gim.2017.107.

[6] S.S. Gandhi, C. Muraresku, E.M. McCormick, M.J. Falk, S.E. McCormack, Risk factors for poor bone health in primary mitochondrial disease, J. Inherit. Metab. Dis. (2017) 1e11, http://dx.doi.org/10.1007/s10545-017-0046-2.

[7] A. Trifunovic, A. Wredenberg, M. Falkenberg, J.N. Spelbrink, A.T. Rovio, C.E. Bruder, M. Bohlooly-Y, S. Gidlof, A. Oldfors, R. Wibom, J. Tornell, H.T. Jacobs, N.-G. Larsson, Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature 429 (2004) 417e423. http://dx.doi. org/10.1038/nature02517.

[8] T. Mito, H. Ishizaki, M. Suzuki, H. Morishima, A. Ota, K. Ishikawa, K. Nakada, A. Maeno, T. Shiroishi, J.I. Hayashi, Transmitochondrial mito-miceD and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders, Biochem. Biophys. Res. Commun. 456 (2015) 933e937, http://dx.doi.org/10.1016/j.bbrc.2014.12.009.

[9] D. Leigh, Subacute necrotizing encephalomyelopathy in an infant, J. Neurol. Neurosurg. Psychiatry 14 (1951) 216e221, http://dx.doi.org/10.1136/ jnnp.14.3.216.

[10] H. Kato, T.T.M. Pham, H. Yamaza, K. Masuda, Y. Hirofuji, X. Han, H. Sato, T. Taguchi, K. Nonaka, Mitochondria regulate the differentiation of stem cells from human exfoliated deciduous teeth, Cell Struct. Funct 116 (2017) 105e116, http://dx.doi.org/10.1247/csf.17012.

[11] S. Nishiyama, K. Kiwaki, I. Takeaki, Y. Seino, Bone mineral density of the lumber spine and total body mass in Japanese children and adolescents, J. Jpn. Pediatr. Soc. 103 (1999) 1131e1138.

[12] H. Jung, O. Akkus, Activation of intracellular calcium signaling in osteoblasts colocalizes with the formation of post-yield diffuse microdamage in bone matrix, Bonekey Rep. 5 (2016) 1e7, http://dx.doi.org/10.1038/ bonekey.2016.5.

[13] S. Boonrungsiman, The role of intracellular calcium phosphate in osteoblast- mediated bone apatite formation, Proc. Natl. Acad. Sci. 109 (2012) 14170e14175, http://dx.doi.org/10.1073/pnas.1208916109/-/DCSupple- mental. www.pnas.org/cgi/doi/10.1073/pnas.1208916109.

[14] X. Xu, S. Duan, F. Yi, A. Ocampo, G.H. Liu, J.C. Izpisua Belmonte, Mitochondrial regulation in pluripotent stem cells, Cell Metab. 18 (2013) 325e332, http:// dx.doi.org/10.1016/j.cmet.2013.06.005.

[15] C.T. Chen, Y.R. Shih, T.K. Kuo, O.K. Lee, Y.H. Wei, Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differ- entiation of human mesenchymal stem cells, Stem Cells 26 (2008) 960e968, http://dx.doi.org/10.1634/stemcells.2007-0509.

[16] A. Sudo, S. Honzawa, I. Nonaka, Y. Goto, Leigh syndrome caused by mito- chondrial DNA G13513A mutation: frequency and clinical features in Japan, (2004) 92e96. http://dx.doi.org/10.1007/s10038-003-0116-1.

[17] A. Diehlmann, S. Bork, R. Saffrich, R.W. Veh, W. Wagner, C. Derst, KATP channels in mesenchymal stromal stem cells: strong up-regulation of Kir6.2 subunits upon osteogenic differentiation, Tissue Cell. 43 (2011) 331e336, http://dx.doi.org/10.1016/j.tice.2011.06.004.

[18] Y. Liu, et al., Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca2+ channel sulfhydration, Cell Stem Cell. 15 (2014) 66e78.

[19] J.H. Kim, X. Liu, J. Wang, X. Chen, H. Zhang, S.H. Kim, J. Cui, R. Li, W. Zhang, Y. Kong, J. Zhang, W. Shui, J. Lamplot, M.R. Rogers, C. Zhao, N. Wang, P. Rajan, J. Tomal, J. Statz, N. Wu, H.H. Luu, R.C. Haydon, T.-C. He, Wnt signaling in bone formation and its therapeutic potential for bone diseases, Ther. Adv. Muscu- loskelet. Dis. 5 (2013) 13e31, http://dx.doi.org/10.1177/1759720X12466608.

[20] V. Krishnan, H.U. Bryant, O.A. MacDougaldyrant, Regulation of bone mass by Wnt signaling, J. Clin. Invest 116 (2006) 1202e1209, http://dx.doi.org/ 10.1172/JCI28551.1202.

[21] H. Rottenberg, A. Scarpa, Calcium uptake and membrane potential in mito- chondria, Biochemistry 13 (1974) 4811e4817.

[22] E.E. Golub, Biomineralization and matrix vesicles in biology and pathology, Semin. Immunopathol. 33 (2011) 409e417, http://dx.doi.org/10.1007/ s00281-010-0230-z.

[23] R.E. Wuthier, G.F. Lipscomb, Matrix vesicles: structure, composition, forma- tion and function in calcification, Front. Biosci. (Landmark Ed.) 16 (2011) 2812e2902.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る