リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids

Suezawa, Takahiro 京都大学 DOI:10.14989/doctor.r13502

2022.09.26

概要

肺線維症は、労作時呼吸困難や乾性咳嗽を主症状とする慢性進行性の間質性肺疾患である。肺線維症の発症には、呼吸機能を担う肺胞上皮細胞が繰り返し傷害を受けることによって、傷害修復を担う線維芽細胞が異常に活性化し、組織収縮や細胞外基質の過剰沈着をきたすことが関与している。肺線維症の疾患モデルでは肺胞上皮細胞と線維芽細胞の相互作用(上皮―間葉相互作用)が重要と考えられている一方で、この相互作用を培養皿の中で再現することは困難だったため、肺胞上皮細胞の傷害や上皮―間葉相互作用を標的とする肺線維症の治療薬開発には限界があった。近年、ヒトiPS細胞由来の肺胞上皮細胞と肺線維芽細胞を肺胞オルガノイドとして共培養することにより、組織幹細胞であるII型肺胞上皮細胞と生体内でガス交換を担うI型肺胞上皮細胞を共存して培養できることが報告されている。本研究では、この培養法を肺線維症の疾患モデリングに応用することを考案した。

まず、肺胞オルガノイドに線維化誘導剤であるブレオマイシンを添加した結果、溶媒のみを添加した対照群に比べて、線維芽細胞の活性化を伴う3次元培養ゲルの顕著な収縮を見出した。この収縮反応は線維芽細胞単独の3次元培養ゲルではほとんど観察されなかったことから、上皮―間葉相互作用を介した線維芽細胞の活性化が関与している可能性が示唆された。次に、ブレオマイシン処理した肺胞オルガノイド中の肺胞上皮細胞の表現型を解析したところ、II型肺胞上皮細胞の細胞老化や、炎症性サイトカインの産生、I型肺胞上皮細胞への分化異常といった肺線維症患者の肺胞上皮細胞と類似した表現型が観察された。これらを指標として化合物スクリーニングを試みたところ、TGF-βのI型受容体であるALK5の阻害剤を添加することにより、病態表現型を改善できることを見出した。また、肺胞オルガノイド内のII型肺胞上皮細胞においてTGFB1の発現が上昇していること、TGF-βの活性化因子であるintegrinαVβ6が上皮細胞特異的に発現していること、integrinαVβ6の拮抗薬も上記の病態表現型に対して同様の改善効果を示すことから、上皮細胞に依存したTGF-βシグナルの活性化が起こっていることが示された。最後に、ブレオマイシンによる肺胞オルガノイド中の線維芽細胞の活性化が、TGF-βシグナルの阻害によって抑制されるかどうかを評価した。ALK5阻害剤は、ブレオマイシンによる肺胞オルガノイド培養ゲルの収縮反応を抑制し、ブレオマイシン添加によって上昇したACTA2,CNN1,TAGLN,MYH11等の線維芽細胞の収縮関連の遺伝子発現を低下させた。また、プロテオミクス解析においてALK5阻害剤は、ブレオマイシンによって蓄積した細胞外基質やコラーゲンなどの合成酵素の発現量を低下させることも見出した。

以上により、iPS細胞由来の肺胞オルガノイドを活用することで、培養皿の中で肺線維症の病態を再現できること、また治療薬の候補化合物を評価できることが示された。この疾患モデルによりヒトにおける肺胞上皮細胞の傷害や、上皮―間葉相互作用を標的とした新規の肺線維症治療薬の開発が可能になることが期待される。

この論文で使われている画像

参考文献

Agarwal, A., Coleno, M.L., Wallace, V.P., Wu, W.Y., Sun, C.H., Tromberg, B.J., and George, S.C. (2001). Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue. Tissue Eng. 7, 191–202. https:// doi.org/10.1089/107632701300062813.

Angelidis, I., Simon, L.M., Fernandez, I.E., Strunz, M., Mayr, C.H., Greiffo, F.R., Tsitsiridis, G., Ansari, M., Graf, E., Strom, T.M., et al. (2019). An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963. https://doi.org/10.1038/s41467-019-08831-9.

Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., Randell, S.H., Noble, P.W., and Hogan, B.L. (2013). Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025–3036. https://doi.org/10.1172/jci68782.

Basil, M.C., Katzen, J., Engler, A.E., Guo, M., Herriges, M.J., Kathiriya, J.J., Windmueller, R., Ysasi, A.B., Zacharias, W.J., Chapman, H.A., et al. (2020). The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502. https://doi.org/10.1016/j.stem.2020.03.009.

Cazzalini, O., Scovassi, A.I., Savio, M., Stivala, L.A., and Prosperi, E. (2010). Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat. Res. 704, 12–20. https://doi. org/10.1016/j.mrrev.2010.01.009.

Chen, J.K., Taipale, J., Cooper, M.K., and Beachy, P.A. (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748. https://doi.org/10.1101/ gad.1025302.

Choi, J., Park, J.E., Tsagkogeorga, G., Yanagita, M., Koo, B.K., Han, N., and Lee, J.H. (2020). Inflammatory signals induce AT2 cellderived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27, 366–382.e7. https://doi. org/10.1016/j.stem.2020.06.020.

Coppe´, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118. https://doi.org/10. 1146/annurev-pathol-121808-102144.

Das, M., Jiang, F., Sluss, H.K., Zhang, C., Shokat, K.M., Flavell, R.A., and Davis, R.J. (2007). Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc. Natl. Acad. Sci. U S A 104, 15759–15764. https://doi.org/10.1073/pnas. 0707782104.

Desai, T.J., Brownfield, D.G., and Krasnow, M.A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194. https://doi.org/10.1038/nature12930.

Gotoh, S., Ito, I., Nagasaki, T., Yamamoto, Y., Konishi, S., Korogi, Y., Matsumoto, H., Muro, S., Hirai, T., Funato, M., et al. (2014). Gen eration of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports 3, 394–403. https://doi.org/10.1016/j.stemcr.2014.07.005.

Horan, G.S., Wood, S., Ona, V., Li, D.J., Lukashev, M.E., Weinreb, P.H., Simon, K.J., Hahm, K., Allaire, N.E., Rinaldi, N.J., et al. (2008). Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65. https://doi.org/10.1164/rccm.200706- 805OC

Hubackova, S., Krejcikova, K., Bartek, J., and Hodny, Z. (2012). IL1- and TGFb-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging 4, 932–951. https://doi.org/10.18632/aging.100520.

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, J., Gillespie, M., Haw, R., et al. (2020). The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503. https://doi.org/10.1093/nar/gkz1031.

Kanagaki, S., Ikeo, S., Suezawa, T., Yamamoto, Y., Seki, M., Hirai, T., Hagiwara, M., Suzuki, Y., and Gotoh, S. (2021a). Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells 39, 156–169. https:// doi.org/10.1002/stem.3302.

Kanagaki, S., Suezawa, T., Moriguchi, K., Nakao, K., Toyomoto, M., Yamamoto, Y., Murakami, K., Hagiwara, M., and Gotoh, S. (2021b). Hydroxypropyl cyclodextrin improves amiodarone-induced aberrant lipid homeostasis of alveolar cells. Am. J. Respir. Cell Mol. Biol. 64, 504–514. https://doi.org/10.1165/rcmb.2020-0119OC.

Katsura, H., Sontake, V., Tata, A., Kobayashi, Y., Edwards, C.E., Heaton, B.E., Konkimalla, A., Asakura, T., Mikami, Y., Fritch, E.J., et al. (2020). Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell 27, 890–904.e8. https://doi. org/10.1016/j.stem.2020.10.005.

Katzen, J., and Beers, M.F. (2020). Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J. Clin. Invest. 130, 5088–5099. https://doi.org/10.1172/jci139519.

Knight, Z.A., and Shokat, K.M. (2005). Features of selective kinase inhibitors. Chem. Biol. 12, 621–637. https://doi.org/10.1016/j. chembiol.2005.04.011.

Kobayashi, Y., Tata, A., Konkimalla, A., Katsura, H., Lee, R.F., Ou, J., Banovich, N.E., Kropski, J.A., and Tata, P.R. (2020). Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946. https://doi.org/10. 1038/s41556-020-0542-8.

Korogi, Y., Gotoh, S., Ikeo, S., Yamamoto, Y., Sone, N., Tamai, K., Konishi, S., Nagasaki, T., Matsumoto, H., Ito, I., et al. (2019). In vitro disease modeling of Hermansky-Pudlak syndrome type 2 using human induced pluripotent stem cell-derived alveolar organoids. Stem Cell Reports 12, 431–440. https://doi.org/10.1016/j. stemcr.2019.01.014.

Lederer, D.J., and Martinez, F.J. (2018). Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823. https://doi.org/10. 1056/NEJMra1705751.

Moeller, A., Ask, K., Warburton, D., Gauldie, J., and Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40, 362–382. https://doi.org/10.1016/j.biocel. 2007.08.011.

Montesano, R., and Orci, L. (1988). Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc. Natl. Acad. Sci. U S A 85, 4894– 4897. https://doi.org/10.1073/pnas.85.13.4894.

Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S.L., Wu, J., Pittet, J.F., Kaminski, N., Garat, C., Matthay, M.A., et al. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328. https://doi.org/10.1016/s0092- 8674(00)80545-0.

Munger, J.S., and Sheppard, D. (2011). Cross talk among TGF-b signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol. 3, a005017. https://doi.org/10.1101/ cshperspect.a005017.

Neumark, N., Cosme, C., Jr., Rose, K.A., and Kaminski, N. (2020). The idiopathic pulmonary fibrosis cell atlas. Am. J. Physiol. Lung Cell Mol. Physiol. 319, L887–L893. https://doi.org/10.1152/ajplung.00451.2020.

Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., and Yamanaka, S. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458–466. https://doi.org/10.1002/stem.1293.

Paez-Ribes, M., Gonza´lez-Gualda, E., Doherty, G.J., and Mun˜oz-Espı´n, D. (2019). Targeting senescent cells in translational medicine. EMBO Mol. Med. 11, e10234. https://doi.org/10.15252/emmm. 201810234.

Paris, A.J., Hayer, K.E., Oved, J.H., Avgousti, D.C., Toulmin, S.A., Zepp, J.A., Zacharias, W.J., Katzen, J.B., Basil, M.C., Kremp, M.M., et al. (2020). STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat. Cell Biol. 22, 1197– 1210. https://doi.org/10.1038/s41556-020-0569-x.

Popova, A.P., Bozyk, P.D., Goldsmith, A.M., Linn, M.J., Lei, J., Bentley, J.K., and Hershenson, M.B. (2010). Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells. Am. J. Physiol. Lung Cell Mol. Physiol. 298, L735–L743. https://doi.org/10.1152/ajplung.00347.2009.

Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S., Fernandez, R., Akbarpour, M., Chen, C.I., Ren, Z., et al. (2019). Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536. https:// doi.org/10.1164/rccm.201712-2410OC.

Riemondy, K.A., Jansing, N.L., Jiang, P., Redente, E.F., Gillen, A.E., Fu, R., Miller, A.J., Spence, J.R., Gerber, A.N., Hesselberth, J.R., and Zemans, R.L. (2019). Single cell RNA sequencing identifies TGFb as a key regenerative cue following LPS-induced lung injury. JCI Insight 5, e123637. https://doi.org/10.1172/jci.insight.123637.

Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z., Monteiro, C.D., McDermott, M.G., and Ma’ayan, A. (2016). The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016, baw100. https://doi.org/10.1093/database/baw100.

Sisson, T.H., Mendez, M., Choi, K., Subbotina, N., Courey, A., Cunningham, A., Dave, A., Engelhardt, J.F., Liu, X., White, E.S., et al. (2010). Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181, 254–263. https://doi.org/10.1164/rccm.200810-1615OC.

Spagnolo, P., Kropski, J.A., Jones, M.G., Lee, J.S., Rossi, G., Karampitsakos, T., Maher, T.M., Tzouvelekis, A., and Ryerson, C.J. (2020). Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol. Ther. 222, 107798. https://doi.org/10. 1016/j.pharmthera.2020.107798.

Strunz, M., Simon, L.M., Ansari, M., Kathiriya, J.J., Angelidis, I., Mayr, C.H., Tsidiridis, G., Lange, M., Mattner, L.F., Yee, M., et al. (2020). Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11, 3559. https://doi.org/10.1038/s41467-020-17358-3.

Tan, Q., Ma, X.Y., Liu, W., Meridew, J.A., Jones, D.L., Haak, A.J., Sicard, D., Ligresti, G., and Tschumperlin, D.J. (2019). Nascent lung organoids reveal epithelium- and bone morphogenetic proteinmediated suppression of fibroblast activation. Am. J. Respir. Cell Mol. Biol. 61, 607–619. https://doi.org/10.1165/rcmb.2018- 0390OC.

Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., and Brown, R.A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363. https:// doi.org/10.1038/nrm809.

Wilkinson, D.C., Alva-Ornelas, J.A., Sucre, J.M., Vijayaraj, P., Durra, A., Richardson, W., Jonas, S.J., Paul, M.K., Karumbayaram, S., Dunn, B., and Gomperts, B.N. (2017). Development of a threedimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl. Med. 6, 622–633. https://doi.org/10.5966/sctm.2016-0192.

Wu, H., Yu, Y., Huang, H., Hu, Y., Fu, S., Wang, Z., Shi, M., Zhao, X., Yuan, J., Li, J., et al. (2020). Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180, 107–121.e17. https://doi.org/10.1016/j.cell.2019.11.027.

Xie, T., Wang, Y., Deng, N., Huang, G., Taghavifar, F., Geng, Y., Liu, N., Kulur, V., Yao, C., Chen, P., et al. (2018). Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640. https://doi.org/10.1016/j.celrep.2018.03. 010.

Yamaguchi, Y., Hearing, V.J., Itami, S., Yoshikawa, K., and Katayama, I. (2005). Mesenchymal-epithelial interactions in the skin: aiming for site-specific tissue regeneration. J. Dermatol. Sci. 40, 1–9. https://doi.org/10.1016/j.jdermsci.2005.04.006.

Yamamoto, Y., Gotoh, S., Korogi, Y., Seki, M., Konishi, S., Ikeo, S., Sone, N., Nagasaki, T., Matsumoto, H., Muro, S., et al. (2017). Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 14, 1097–1106. https://doi. org/10.1038/nmeth.4448.

Yao, C., Guan, X., Carraro, G., Parimon, T., Liu, X., Huang, G., Mulay, A., Soukiasian, H.J., David, G., Weigt, S.S., et al. (2021). Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 203, 707–717. https://doi.org/10. 1164/rccm.202004-1274OC.

Youk, J., Kim, T., Evans, K.V., Jeong, Y.I., Hur, Y., Hong, S.P., Kim, J.H., Yi, K., Kim, S.Y., Na, K.J., et al. (2020). Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 27, 905–919.e10. https://doi.org/10. 1016/j.stem.2020.10.004.

Zepp, J.A., Morley, M.P., Loebel, C., Kremp, M.M., Chaudhry, F.N., Basil, M.C., Leach, J.P., Liberti, D.C., Niethamer, T.K., Ying, Y., et al. (2021). Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus. Science 371, eabc3172. https://doi.org/10.1126/science.abc3172.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る