リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Somatosensory evoked magnetic fields of periodontal mechanoreceptors.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Somatosensory evoked magnetic fields of periodontal mechanoreceptors.

Hiroki Hihara Hiroyasu Kanetaka Akitake Kanno Eriya Shimada Satoko Koeda Ryuta Kawashima Nobukazu Nakasato Keiichi Sasaki 東北大学 DOI:10.1016/j.heliyon.2020.e03244

2020.01

概要

To evaluate the localization of responses to stimulation of the periodontal mechanoreceptors in the primary so- matosensory cortex, somatosensory evoked fields (SEFs) were measured for stimulation of the left mandibular canine and first molar using magnetoencephalography in 25 healthy subjects. Tactile stimulation used a hand- made stimulus device which recorded the trigger at the moment of touching the teeth.SEFs for the canine and first molar were detected in 20 and 19 subjects, respectively. Both responses were detected in the bilateral hemi- spheres. The latency for the canine was 62.1  12.9 ms in the ipsilateral hemisphere and 65.9  14.8 ms in the contralateral hemisphere. The latency for the first molar was 47.4  6.6 ms in the ipsilateral hemisphere and 47.8  9.1 ms in the contralateral hemisphere. The latency for the first molar was significantly shorter than that for the canine. The equivalent current dipoles were estimated in the central sulcus and localized anteroinferiorly compared to the locations for the SEFs for the median nerve. No significant differences in three-dimensional coordinates were found between the canine and first molar. These findings demonstrate the precise location of the teeth within the orofacial representation area in the primary somatosensory cortex.

この論文で使われている画像

参考文献

[1] K. Sakamoto, H. Nakata, R. Kakigi, The effect of mastication on human cognitive processing: a study using event-related potentials, Clin. Neurophysiol. 120 (1) (2009) 41–50.

[2] R.S. Manly, C. Pfaffman, D.D. Lathrop, J. Keyser, Oral sensory thresholds of persons with natural and artificial dentitions, J. Dent. Res. 31 (3) (1952) 305–312.

[3] W.R. Loewenstein, R. Rathkamp, A study on the pressoreceptive sensibility of the tooth, J. Dent. Res. 34 (2) (1955) 287–294.

[4] M. Trulsson, Multiple-tooth receptive fields of single human periodontal mechanoreceptive afferents, J. Neurophysiol. 69 (2) (1993) 474–481.

[5] M. Trulsson, Sensory-motor function of human periodontal mechanoreceptors, J. Oral Rehabil. 33 (4) (2006) 262–273.

[6] M. Trulsson, R.S. Johansson, Encoding of amplitude and rate of forces applied to the teeth by human periodontal mechanoreceptive afferents, J. Neurophysiol. 72 (4) (1994) 1734–1744.

[7] M. Trulsson, R.S. Johansson, Encoding of tooth loads by human periodontal afferents and their role in jaw motor control, Prog. Neurobiol. 49 (3) (1996a) 267–284.

[8] M. Trulsson, R.S. Johansson, Forces applied by the incisors and roles of periodontal afferents during food-holding and -biting tasks, Exp. Brain Res. 107 (3) (1996b) 486–496.

[9] K. Oki, M. Hamanaka, T. Arima, S. Takahashi, K. Hasegawa, S. Minagi, A new method for evaluating the threshold of periodontal ligament mechanoreceptor by slow speed mechanical stimulation, J. Periodontal. Res. 38 (5) (2003) 482–487.

[10] Y. Hattori, C. Satoh, T. Kunieda, R. Endoh, H. Hisamatsu, M. Watanabe, Bite forces and their resultants during forceful intercuspal clenching in humans, J. Biomech. 42 (10) (2009) 1533–1538.

[11] T. Ogawa, T. Suzuki, N. Oishi, X. Zhang, I. Naert, K. Sasaki, Tactile sensation and occlusal loading condition of mandibular premolars and molars, Odontology 99 (2) (2011) 193–196.

[12] Y. Morimoto, K. Oki, S. Iida, C. Shirahige, N. Maeda, S. Kawakami, et al., Effect of transient occlusal loading on the threshold of tooth tactile sensation perception for tapping like the impulsive stimulation, Odontology 101 (2) (2013) 199–203.

[13] D.A. Ettlin, H. Zhang, K. Lutz, T. Jarmann, D. Meier, L.M. Gallo, et al., Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (FMRI), J. Dent. Res. 83 (10) (2004) 757–761.

[14] M. Trulsson, S.T. Francis, R. Bowtell, F. McGlone, Brain activations in response to vibrotactile tooth stimulation: a psychophysical and FMRI study, J. Neurophysiol. 104 (4) (2010) 2257–2265.

[15] J.J. Miyamoto, M. Honda, D.N. Saito, T. Okada, T. Ono, K. Ohyama, et al., The representation of the human oral area in the somatosensory cortex: a functional MRI study, Cerebr. Cortex 16 (5) (2006) 669–675.

[16] P. Habre-Hallage, L. Hermoye, W. Gradkowski, R. Jacobs, H. Reychler, C.B. Grandin, A manually controlled new device for punctuate mechanical stimulation of teeth during functional magnetic resonance imaging studies, J. Clin. Periodontol. 37 (9) (2010) 863–872.

[17] P. Habre-Hallage, L. Dricot, J. acobs, D. van Steenberghe, H. Reychler, C.B. Grandin, Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI, Eur. J. Oral Implant. 5 (2) (2012) 175–190.

[18] R. Hari, E. Kaukoranta, Neuromagnetic studies of somatosensory system: principles and examples, Prog. Neurobiol. 24 (3) (1985) 233–256.

[19] H. Nakahara, N. Nakasato, A. Kanno, S. Murayama, K. Hatanaka, H. Itoh, et al., Somatosensory-evoked fields for gingiva, lip, and tongue, J. Dent. Res. 83 (4) (2004) 307–311.

[20] B.T. Nguyen, T.D. Tran, M. Hoshiyama, K. Inui, R. Kakigi, Face representation in the human primary somatosensory cortex, Neurosci. Res. 50 (2) (2004) 227–232.

[21] S. Murayama, N. Nakasato, H. Nakahara, A. Konno, H. Itoh, Neuromagnetic evidence that gingival area is adjacent to tongue area in human primary somatosensory cortex, Tohoku J. Exp. Med. 207 (3) (2005) 191–196.

[22] P. Nevalainen, R. Ramstad, E. Isotalo, M.L. Haapanen, L. Lauronen, Trigeminal somatosensory evoked magnetic fields to tactile stimulation, Clin. Neurophysiol. 117 (9) (2006) 2007–2015.

[23] Y. Tamura, Y. Shibukawa, M. Shintani, Y. Kaneko, T. Ichinohe, Oral structure representation in human somatosensory cortex, Neuroimage 43 (1) (2008) 128–135.

[24] K. Kubo, Y. Shibukawa, M. Shintani, T. Suzuki, T. Ichinohe, Y. Kaneko, Cortical representation area of human dental pulp, J. Dent. Res. 87 (4) (2008) 358–362.

[25] A. Nakamura, T. Yamada, A. Goto, T. Kato, K. Ito, Y. Abe, et al., Somatosensory homunculus as drawn by MEG, Neuroimage 7 (4 Pt 1) (1998) 377–386.

[26] V. Jousm€aki, N. Nishitani, R. Hari, A brush stimulator for functional brain imaging, Clin. Neurophysiol. 118 (12) (2007) 2620–2624.

[27] J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol. 32 (1) (1987) 11–22.

[28] E. Pihko, L. Lauronen, H. Wikstro€m, S. Taulu, J. Nurminen, S. Kivitie-Kallio, et al., Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns, Clin. Neurophysiol. 115 (2) (2004) 448–455.

[29] K. Nagamatsu, N. Nakasato, K. Hatanaka, A. Kanno, M. Iwasaki, T. Yoshimoto, Neuromagnetic localization of N15, the initial cortical response to lip stimulus, Neuroreport 12 (1) (2001) 1–5.

[30] T. Otsuka, H. Dan, I. Dan, M. Sase, T. Sano, D. Tsuzuki, et al., Effect of local anesthesia on trigeminal somatosensory-evoked magnetic fields, J. Dent. Res. 91 (12) (2012) 1196–1201.

[31] H. Hihara, H. Kanetaka, A. Kanno, S. Koeda, N. Nakasato, R. Kawashima, et al., Evaluating age-related change in lip somatosensation using somatosensory evoked magnetic fields, PLoS One 12 (6) (2017), e0179323.

[32] A.G. Hannam, Receptor fields of periodontal mechanosensitive units in the dog, Arch. Oral Biol. 15 (10) (1970) 971–978.

[33] P. Morquette, R. Lavoie, M.D. Fhima, X. Lamoureux, D. Verdier, A. Kolta, Generation of the masticatory central pattern and its modulation by sensory feedback, Prog. Neurobiol. 96 (3) (2012) 340–355.

[34] M.G. Piancino, G. Isola, R. Cannavale, G. Cutroneo, G. Vermiglio, P. Bracco, et al., From periodontal mechanoreceptors to chewing motor control: a systematic review, Arch. Oral Biol. 78 (2017) 109–121.

[35] P.R. Manger, T.M. Woods, E.G. Jones, Representation of face and intra-oral structures in area 3b of macaque monkey somatosensory cortex, J. Comp. Neurol. 371 (4) (1996) 513–521.

[36] C.M. Cerkevich, H.X. Qi, J.H. Kass, Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys, J. Comp. Neurol. 521 (17) (2013) 3954–3971.

[37] C.M. Cerkevich, H.X. Qi, J.H. Kass, Corticocortical projections of representations of the teeth, tongue, and face in somatosensory area 3b of macaques, J. Comp. Neurol. 522 (3) (2014) 546–572.

[38] E.A. Disbrow, L.B. Hinkley, T.P. Roberts, Ipsilateral representation of oral structures in human anterior parietal somatosensory cortex and integration of inputs across the midline, J. Comp. Neurol. 467 (4) (2003) 487–495.

[39] H.H. Jantsch, P. Kemppainen, R. Ringler, H.O. Handwerker, C. Forster, Cortical representation of experimental tooth pain in humans, Pain 118 (3) (2005) 390–399.

[40] E. Rausell, E.G. Jones, Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map, J. Neurosci. 11 (1) (1991a) 210–225.

[41] E. Rausell, E.G. Jones, Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex, J. Neurosci. 11 (1) (1991b) 226–237.

[42] N. Jain, H.X. Qi, K.C. Catania, J.H. Kaas, Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys, J. Comp. Neurol. 429 (3) (2001) 455–468.

[43] S. Iyengar, H.X. Qi, N. Jain, J.H. Kaas, Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys, J. Comp. Neurol. 501 (1) (2007) 95–120.

[44] A. Weigelt, P. Terekhin, P. Kemppainen, A. Dorfler, C. Forster, The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway, Pain 149 (3) (2010) 529–538.

[45] E.M. Robertson, A. Pascual-Leone, Prefrontal cortex: procedural sequence learning and awareness, Curr. Biol. 13 (2) (2003) R65–R67.

[46] W. Penfield, E. Boldrey, Somatic motor and somatosensory representation in cerebral cortex of man as studied by electrical stimulation, Brain 60 (1937), 389–343.

[47] S.E. Johnsen, M. Trulsson, Receptive field properties of human periodontal afferents responding to loading of premolar and molar teeth, J. Neurophysiol. 89 (3) (2003) 1478–1487.

[48] L.D. Lin, G.M. Murray, B.J. Sessle, Functional properties of single neurons in the primate face primary somatosensory cortex. I. Relations with trained orofacial motor behaviors, J. Neurophysiol. 71 (6) (1994) 2377–2390.

[49] T. Toda, M. Taoka, Integration of the upper and lower lips in the postcentral area 2 of conscious macaque monkeys (Macaca fuscata), Arch. Oral Biol. 47 (6) (2002) 449–456.

[50] T. Toda, M. Taoka, The complexity of receptive fields of periodontal mechanoreceptive neurons in the postcentral area 2 of conscious macaque monkey brains, Arch. Oral Biol. 46 (11) (2001) 1079–1084.

[51] H. Bessho, Y. Shibukawa, M. Shintani, Y. Yajima, T. Suzuki, T. Shibahara, Localization of palatal area in human somatosensory cortex, J. Dent. Res. 86 (3) (2007) 265–270.

[52] T. Toda, M. Taoka, Converging patterns of inputs from oral structures in the postcentral somatosensory cortex of conscious macaque monkeys, Exp. Brain Res. 158 (1) (2004) 43–49.

[53] T. Sasano, Diagnosis of odontalgia, Dental Radiology 45 (1) (2005) 5–9. Japanese.

参考文献をもっと見る