リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites

Shimasaki, Tomohisa Masuda, Sachiko Garrido-Oter, Ruben Kawasaki, Takashi Aoki, Yuichi Shibata, Arisa Suda, Wataru Shirasu, Ken Yazaki, Kazufumi Nakano, Ryohei Thomas Sugiyama, Akifumi 京都大学 DOI:10.1128/mbio.00846-21

2021.06.29

概要

Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process.

この論文で使われている画像

参考文献

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

adaptation to plants. Nat Genet 50:138–150. https://doi.org/10.1038/

s41588-017-0012-9.

Rodgman A, Perfetti TA. 2009. The chemical components of tobacco and

tobacco smoke. CRC Press, Boca Raton, FL. https://doi.org/10.1201/

9781420078848.

Jassbi AR, Zare S, Asadollahi M, Schuman MC. 2017. Ecological roles and biological activities of specialized metabolites from the genus Nicotiana. Chem

Rev 117:12227–12280. https://doi.org/10.1021/acs.chemrev.7b00001.

Chen K, de Borne FD, Julio E, Obszynski J, Pale P, Otten L. 2016. Root-specific expression of opine genes and opine accumulation in some cultivars

of the naturally occurring genetically modified organism Nicotiana tabacum. Plant J 87:258–269. https://doi.org/10.1111/tpj.13196.

Saito K, Noma M, Kawashima N. 1985. The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480. https://doi.org/10.1016/

S0031-9422(00)80751-7.

Moore LW, Chilton WS, Canfield ML. 1997. Diversity of opines and opinecatabolizing bacteria isolated from naturally occurring crown gall tumors.

Appl Environ Microbiol 63:201–207. https://doi.org/10.1128/AEM.63.1

.201-207.1997.

Chilton WS, Stomp AN, Beringue W, Bouzar H, Vaudequin-Dransart V,

Petit A, Dessaux Y. 1995. The chrysopine family of Amadori-type crown

gall opines. Phytochemistry 40:619–628. https://doi.org/10.1016/0031

-9422(93)00283-L.

White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW. 1983.

Sequences homologous to Agrobacterium rhizogenes T-DNA in the

genomes of uninfected plants. Nature 301:348–350. https://doi.org/10

.1038/301348a0.

Suzuki K, Yamashita I, Tanaka N. 2002. Tobacco plants were transformed

by Agrobacterium rhizogenes infection during their evolution. Plant J

32:775–787. https://doi.org/10.1046/j.1365-313x.2002.01468.x.

Quispe-Huamanquispe DG, Gheysen G, Kreuze JF. 2017. Horizontal gene

transfer contributes to plant evolution: the case of Agrobacterium TDNAs. Front Plant Sci 8:2015. https://doi.org/10.3389/fpls.2017.02015.

Chen K, Dorlhac de Borne F, Szegedi E, Otten L. 2014. Deep sequencing of

the ancestral tobacco species Nicotiana tomentosiformis reveals multiple

T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682. https://doi.org/10.1111/

tpj.12661.

Marty L, Vigouroux A, Aumont-Nicaise M, Dessaux Y, Faure D, Moréra S.

2016. Structural basis for high specificity of Amadori compound and mannopine opine binding in bacterial pathogens. J Biol Chem 291:22638–22649.

https://doi.org/10.1074/jbc.M116.745562.

Hayashi S, Watanabe M, Kobayashi M, Tohge T, Hashimoto T, Shoji T.

2020. Genetic manipulation of transcriptional regulators alters nicotine

biosynthesis in tobacco. Plant Cell Physiol 61:1041–1053. https://doi.org/

10.1093/pcp/pcaa036.

Kessler A, Halitschke R, Baldwin IT. 2004. Silencing the jasmonate cascade:

induced plant defenses and insect populations. Science 305:665–668.

https://doi.org/10.1126/science.1096931.

Baldwin IT, Schmelz EA, Ohnmeiss TE. 1994. Wound-induced changes in

root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes. J Chem Ecol

20:2139–2157. https://doi.org/10.1007/BF02066250.

Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. 2004. Nicotine’s defensive function in nature. PLoS Biol 2:E217. https://doi.org/10.1371/journal.pbio

.0020217.

Ferri S, Kim S, Tsugawa W, Sode K. 2009. Review of fructosyl amino

acid oxidase engineering research: a glimpse into the future of hemoglobin A1c biosensing. J Diabetes Sci Technol 3:585–592. https://doi

.org/10.1177/193229680900300324.

Mu Y, Chen Q, Parales RE, Lu Z, Hong Q, He J, Qiu J, Jiang J. 2020. Bacterial

catabolism of nicotine: catabolic strains, pathways and modules. Environ

Res 183:109258. https://doi.org/10.1016/j.envres.2020.109258.

Busse HJ. 2016. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected

species of the genus Arthrobacter in the novel genera Glutamicibacter

gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen.

nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and

emended description of Arthrobacter roseus. Int J Syst Evol Microbiol

66:9–37. https://doi.org/10.1099/ijsem.0.000702.

Busse H-J, Wieser M, Buczolits S. 2012. Genus III. Arthrobacter, p 578–624.

In Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig

W, Suzuki K-I, Parte A (ed), Bergey’s manual of systematic bacteriology,

vol 5, part A. Springer, New York, NY.

May/June 2021 Volume 12 Issue 3 e00846-21

37. Wippel K, Tao K, Niu Y, Zgadzaj R, Guan R, Dahms E, Zhang P, Jensen DB,

Logemann E, Radutoiu S, Schulze-Lefert P, Garrido-Oter R. 2021. Host

preference and invasiveness of commensals in the Lotus and Arabidopsis

root microbiota. bioRxiv https://doi.org/10.1101/2021.01.12.426357.

38. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M,

Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B,

McHardy AC, Vorholt JA, Schulze-Lefert P. 2015. Functional overlap of the

Arabidopsis leaf and root microbiota. Nature 528:364–369. https://doi

.org/10.1038/nature16192.

39. Durán P, Flores-Uribe J, Wippel K, Zhang P, Guan R, Garrido-Oter R. 2021.

Characterization of the Chlamydomonas reinhardtii phycosphere reveals

conserved features of the plant microbiota. bioRxiv https://doi.org/10

.1101/2021.03.04.433956.

40. Wu M, Eisen JA. 2008. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9:R151. https://doi.org/10.1186/gb-2008-9

-10-r151.

41. Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference

for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/

s13059-019-1832-y.

42. Salas ME, Lozano MJ, López JL, Draghi WO, Serrania J, Torres Tejerizo GA,

Albicoro FJ, Nilsson JF, Pistorio M, Del Papa MF, Parisi G, Becker A, Lagares

A. 2017. Specificity traits consistent with legume-rhizobia coevolution

displayed by Ensifer meliloti rhizosphere colonization. Environ Microbiol

19:3423–3438. https://doi.org/10.1111/1462-2920.13820.

43. Wheatley RM, Ford BL, Li L, Aroney STN, Knights HE, Ledermann R, East

AK, Ramachandran VK, Poole PS. 2020. Lifestyle adaptations of Rhizobium

from rhizosphere to symbiosis. Proc Natl Acad Sci U S A 117:23823–23834.

https://doi.org/10.1073/pnas.2009094117.

44. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter

B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L,

van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. 2012. Functional

characteristics of an endophyte community colonizing rice roots as

revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36.

https://doi.org/10.1094/MPMI-08-11-0204.

45. Igloi GL, Brandsch R. 2003. Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1dependent nicotine uptake system. J Bacteriol 185:1976–1986. https://

doi.org/10.1128/jb.185.6.1976-1986.2003.

46. Maillard LC. 1912. Action des acides aminés sur les sucres: formation des

mélanoïdines par voie méthodique. C R Acad Sci 154:66–68.

47. Ferri S, Sakaguchi A, Goto H, Tsugawa W, Sode K. 2005. Isolation and characterization of a fructosyl-amine oxidase from an Arthrobacter sp. Biotechnol Lett 27:27–32. https://doi.org/10.1007/s10529-004-6312-z.

48. Hirokawa K, Kajiyama N. 2002. Recombinant Agrobacterium AgaE-like

protein with fructosyl amino acid oxidase activity. Biosci Biotechnol Biochem 66:2323–2329. https://doi.org/10.1271/bbb.66.2323.

49. Ali MM, Newsom DL, González JF, Sabag-Daigle A, Stahl C, Steidley B,

Dubena J, Dyszel JL, Smith JN, Dieye Y, Arsenescu R, Boyaka PN, Krakowka S,

Romeo T, Behrman EJ, White P, Ahmer BM. 2014. Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine. PLoS

Pathog 10:e1004209. https://doi.org/10.1371/journal.ppat.1004209.

50. Bunn H, Gabbay K, Gallop P. 1978. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27. https://doi.org/10.1126/

science.635569.

51. Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ. 2009. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. Plant J 59:661–671. https://

doi.org/10.1111/j.1365-313X.2009.03898.x.

52. Troise AD, Wiltafsky M, Fogliano V, Vitaglione P. 2018. The quantification

of free Amadori compounds and amino acids allows to model the bound

Maillard reaction products formation in soybean products. Food Chem

247:29–38. https://doi.org/10.1016/j.foodchem.2017.12.019.

53. Pavia CS, Pierre A, Nowakowski J. 2000. Antimicrobial activity of nicotine

against a spectrum of bacterial and fungal pathogens. J Med Microbiol

49:675–676. https://doi.org/10.1099/0022-1317-49-7-675.

54. Sagarkar S, Bhardwaj P, Storck V, Devers-Lamrani M, Martin-Laurent F,

Kapley A. 2016. s-Triazine degrading bacterial isolate Arthrobacter sp. AKYN10, a candidate for bioaugmentation of atrazine contaminated soil.

Appl Microbiol Biotechnol 100:903–913. https://doi.org/10.1007/s00253

-015-6975-5.

55. Arora PK, Jain RK. 2013. Arthrobacter nitrophenolicus sp. nov. a new 2chloro-4-nitrophenol degrading bacterium isolated from contaminated

soil. 3 Biotech 3:29–32. https://doi.org/10.1007/s13205-012-0066-4.

mbio.asm.org

15

Downloaded from https://journals.asm.org/journal/mbio on 10 February 2022 by 130.54.110.22.

PSM-Mediated Plant Microbiota Assembly

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Shimasaki et al.

May/June 2021 Volume 12 Issue 3 e00846-21

61.

62.

63.

64.

65.

alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10

.1038/msb.2011.75.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for

automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348.

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi

.org/10.1371/journal.pone.0009490.

Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for

de novo assembly of microbial genomes. PLoS One 7:e42304. https://doi

.org/10.1371/journal.pone.0042304.

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

Häkkinen ST, Rischer H, Laakso I, Maaheimo H, Seppänen-Laakso T,

Oksman-Caldentey K-M. 2004. Anatalline and other methyl jasmonate-inducible nicotine alkaloids from Nicotiana tabacum cv. By-2 cell cultures.

Planta Med 70:936–941. https://doi.org/10.1055/s-2004-832620.

mbio.asm.org

16

Downloaded from https://journals.asm.org/journal/mbio on 10 February 2022 by 130.54.110.22.

56. Strehmel N, Böttcher C, Schmidt S, Scheel D. 2014. Profiling of secondary

metabolites in root exudates of Arabidopsis thaliana. Phytochemistry

108:35–46. https://doi.org/10.1016/j.phytochem.2014.10.003.

57. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley

GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of

marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z.

58. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP.

2016. DADA2: high-resolution sample inference from Illumina amplicon

data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869.

59. Devers M, Soulas G, Martin-Laurent F. 2004. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 56:3–15. https://doi

.org/10.1016/j.mimet.2003.08.015.

60. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R,

McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011.

Fast, scalable generation of high-quality protein multiple sequence

...

参考文献をもっと見る