リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on energy metabolism–related lipid compositions in blood and oocytes at different lactation stages in dairy cows」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on energy metabolism–related lipid compositions in blood and oocytes at different lactation stages in dairy cows

古川, 瑛理 北海道大学

2023.03.23

概要

Adverse effects of high FFA on bovine oocytes have been studied mainly in vitro, and
cytotoxicity [43] and impaired developmental competence [21, 33, 45, 46] have been
demonstrated. Furthermore, supplementation of high levels of oleic acid during maturation
accelerated accumulation of lipid droplets (i.e., TAG) in oocytes, although FFA levels in
oocytes was not investigated in this study [21]. On the other hand, information on relationships
between circulating high FFA and oocyte lipids in vivo is limited. A previous study indicated
that the postpartum increase in blood FFA levels reflected elevated follicular fluid FFA levels
[46]. Cows at 16 DIM showed a 3-fold higher blood FFA concentration and 1.5-fold higher
follicular fluid FFA concentration than those at 44 DIM [46]. However, FFA concentrations
and TAG contents in oocytes of postpartum cows have not been studied. A previous study
examined the effects of a short-term exposure to high FFA concentrations on oocyte TAG
contents [34]. This study used heifers fasted for 4 days as a high blood FFA model and
demonstrated that TAG contents in oocytes did not increase despite high FFA concentrations
in blood and follicular fluid [34]. However, the effects of high plasma FFA on oocytes for a
longer period remain to be studied.
The present study investigated FFA and TAG compositions of plasma and oocytes of
cows at different lactation stages under grazing management. Additionally, heifers, as a model
animal of normal fertility, were used as a control group.
2. Materials and methods
2.1. Animals
The present study was implemented according to the animal experimental regulations
of the Hokkaido University Animal Care and Use Committee (Approval No. 18-0028).
Holstein cows and heifers were kept at the experimental farm of Hokkaido University (Sapporo,
Japan). Eleven multiparous and 3 primiparous non-pregnant lactating cows (26–85 months of
age, 1–5 parities) and 4 non-pregnant heifers with normal ovarian cyclicity (22–31 months of
age) were used, and the study was conducted between June and August 2018. Cows were
pastured all day and fed supplementary corn silage or housed in the barn all day and fed corn
silage, hay, and concentrated feed. Heifers were kept in a free barn attached to a paddock and
fed hay and wheat bran. ...

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Butler WR, Smith RD. Interrelationships between energy balance and postpartum

reproductive function in dairy cattle. J Dairy Sci 1989;72:767–783.

Berry DP, Friggens NC, Lucy M, Roche JR. Milk production and fertility in cattle.

Annu Rev Anim Biosci 2016;4:269–290.

Dobson H, Walker SL, Morris MJ, Routly JE, Smith RF. Why is it getting more difficult

to successfully artificially inseminate dairy cows? Animal 2008;2:1104–1111.

Esposito G, Irons PC, Webb EC, Chapwanya A. Interactions between negative energy

balance, metabolic diseases, uterine health and immune response in transition dairy

cows. Anim Reprod Sci 2014;144:60–71.

Diskin MG, Morris DG. Embryonic and early foetal losses in cattle and other ruminants.

Reprod Domest Anim 2008;43 Suppl 2:260–267.

Katagiri S, Moriyoshi M. Alteration of the endometrial EGF profile as a potential

mechanism connecting the alterations in the ovarian steroid hormone profile to

embryonic loss in repeat breeders and high-producing cows. J Reprod Dev

2013;59:415–420.

Cheong SH, Sa Filho OG, Absalon-Medina VA, Pelton SH, Butler WR, Gilbert RO.

Metabolic and endocrine differences between dairy cows that do or do not ovulate first

postpartum dominant follicles. Biol Reprod 2016;94:Article 18:1–11.

Lucy MC, Butler ST, Garverick HA. Endocrine and metabolic mechanisms linking

postpartum glucose with early embryonic and foetal development in dairy cows.

Animal 2014;8 Suppl 1:82–90.

Rukkwamsuk T, Kruip TA, Wensing T. Relationship between overfeeding and

overconditioning in the dry period and the problems of high producing dairy cows

during the postparturient period. Vet Q 1999;21:71–77.

Grummer RR, Mashek DG, Hayirli A. Dry matter intake and energy balance in the

transition period. Vet Clin North Am Food Anim Pract 2004;20:447–470.

Rastani RR, Grummer RR, Bertics SJ, Gümen A, Wiltbank MC, Mashek DG, Schwab

MC. Reducing dry period length to simplify feeding transition cows: milk production,

energy balance, and metabolic profiles. J Dairy Sci 2005;88:1004–1014.

Adewuyi AA, Gruys E, van Eerdenburg FJ. Non esterified fatty acids (NEFA) in dairy

cattle. A review. Vet Q 2005;27:117–126.

Gärtner T, Gernand E, Gottschalk J, Donat K. Relationships between body condition,

body condition loss, and serum metabolites during the transition period in primiparous

and multiparous cows. J Dairy Sci 2019;102:9187–9199.

Meikle A, Kulcsar M, Chilliard Y, Febel H, Delavaud C, Cavestany D, Chilibroste P.

Effects of parity and body condition at parturition on endocrine and reproductive

parameters of the cow. Reproduction 2004;127:727–737.

53

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Theilgaard P, Friggens N, Sloth K, Ingvartsen K. The effect of breed, parity and body

fatness on the lipolytic response of dairy cows. Anim Sci 2002;75:209–219.

Grummer RR. Nutritional and management strategies for the prevention of fatty liver

in dairy cattle. Vet J 2008;176:10–20.

Ster C, Loiselle MC, Lacasse P. Effect of postcalving serum nonesterified fatty acids

concentration on the functionality of bovine immune cells. J Dairy Sci 2012;95:708–

717.

Song Y, Loor JJ, Li C, Liang Y, Li N, Shu X, Yang Y, Feng X, Du X, Wang Z, Liu G,

Li X. Enhanced mitochondrial dysfunction and oxidative stress in the mammary gland

of cows with clinical ketosis. J Dairy Sci 2021;104:6909–6918.

Song Y, Li N, Gu J, Fu S, Peng Z, Zhao C, Zhang Y, Li X, Wang Z, Li X, Liu G. βHydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling

pathway. J Dairy Sci 2016;99:9184–9198.

Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Jr., Ory DS, Schaffer JE.

Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl

Acad Sci U S A 2003;100:3077–3082.

Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB,

Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine

oocyte developmental competence. Biol Reprod 2011;85:62–69.

Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, MacMillan KL,

Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum

stress in cattle cumulus oocyte complexes alters cell metabolism and developmental

competence. Biol Reprod 2016;94:Article 23:1–9.

Yamaji-Hasegawa A, Tsujimoto M. Asymmetric distribution of phospholipids in

biomembranes. Biol Pharm Bull 2006;29:1547–1553.

Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog

Lipid Res 2004;43:134–176.

Divecha N, Irvine RF. Phospholipid signaling. Cell 1995;80:269–278.

Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F,

van Meer G, Wakelam MJ, Dennis EA. Update of the LIPID MAPS comprehensive

classification system for lipids. J Lipid Res 2009;50 Suppl:9–14.

Nguyen P, Leray V, Diez M, Serisier S, Bloc’h JL, Siliart B, Dumon H. Liver lipid

metabolism. J Anim Physiol Anim Nutr 2008;92:272–283.

Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis,

and signaling. Chem Rev 2011;111:6359–6386.

Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial

axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 2008;47:1495–1503.

Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid

54

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Res 2016;57:1329–1338.

Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res

2006;45:42–72.

Garbarino J, Padamsee M, Wilcox L, Oelkers PM, D'Ambrosio D, Ruggles KV, Ramsey

N, Jabado O, Turkish A, Sturley SL. Sterol and diacylglycerol acyltransferase

deficiency triggers fatty acid-mediated cell death. J Biol Chem 2009;284:30994–31005.

Aardema H, van Tol HTA, Wubbolts RW, Brouwers J, Gadella BM, Roelen BAJ.

Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against

saturated fatty acid stress. Biol Reprod 2017;96:982–992.

Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT,

Roelen BA, Vos PL, Helms JB, Gadella BM. Bovine cumulus cells protect maturing

oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol

Reprod 2013;88:Article 164:1–15.

Argov N, Arav A, Sklan D. Number of oocytes obtained from cows by OPU in early,

but not late lactation increased with plasma insulin and estradiol concentrations and

expression of mRNA of the FSH receptor in granulosa cells. Theriogenology

2004;61:947–962.

Matoba S, O'Hara L, Carter F, Kelly AK, Fair T, Rizos D, Lonergan P. The association

between metabolic parameters and oocyte quality early and late postpartum in Holstein

dairy cows. J Dairy Sci 2012;95:1257–1266.

Roth Z, Inbar G, Arav A. Comparison of oocyte developmental competence and

follicular steroid content of nulliparous heifers and cows at different stages of lactation.

Theriogenology 2008;69:932–939.

Kendrick KW, Bailey TL, Garst AS, Pryor AW, Ahmadzadeh A, Akers RM, Eyestone

WE, Pearson RE, Gwazdauskas FC. Effects of energy balance of hormones, ovarian

activity, and recovered oocytes in lactating Holstein cows using transvaginal follicular

aspiration. J Dairy Sci 1999;82:1731–1741.

Desmet KLJ, Marei WFA, Richard C, Sprangers K, Beemster GTS, Meysman P,

Laukens K, Declerck K, Vanden Berghe W, Bols PEJ, Hue I, Leroy J. Oocyte

maturation under lipotoxic conditions induces carryover transcriptomic and functional

alterations during post-hatching development of good-quality blastocysts: novel

insights from a bovine embryo-transfer model. Hum Reprod 2020;35:293–307.

Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular

predictors. Reprod Fertil Dev 2007;19:1–12.

Marei WFA, Van Raemdonck G, Baggerman G, Bols PEJ, Leroy J. Proteomic changes

in oocytes after in vitro maturation in lipotoxic conditions are different from those in

cumulus cells. Sci Rep 2019;9:Article 3673.

Yang M, Tao J, Chai M, Wu H, Wang J, Li G, He C, Xie L, Ji P, Dai Y, Yang L, Liu G.

55

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Melatonin improves the quality of inferior bovine oocytes and promoted their

subsequent IVF embryo development: mechanisms and results. Molecules

2017;22:Article 2059.

Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA,

Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte

against fatty acid-induced lipotoxicity. Biol Reprod 2015;92:Article 16:1–16.

Chen Z, Wu Y, Nagano M, Ueshiba K, Furukawa E, Yamamoto Y, Chiba H, Hui SP.

Lipidomic profiling of dairy cattle oocytes by high performance liquid

chromatography-high resolution tandem mass spectrometry for developmental

competence markers. Theriogenology 2020;144:56–66.

Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ,

Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine

oocyte maturation compromise early embryo physiology. PloS one 2011;6:Article

e23183.

Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G,

Van Soom A. Non-esterified fatty acids in follicular fluid of dairy cows and their effect

on developmental capacity of bovine oocytes in vitro. Reproduction 2005;130:485–495.

Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP. Invited review:

Body condition score and its association with dairy cow productivity, health, and

welfare. J Dairy Sci 2009;92:5769–5801.

Roche JR, Berry DP, Kolver ES. Holstein-Friesian strain and feed effects on milk

production, body weight, and body condition score profiles in grazing dairy cows. J

Dairy Sci 2006;89:3532–3543.

Walters AH, Pryor AW, Bailey TL, Pearson RE, Gwazdauskas FC. Milk yield, energy

balance, hormone, follicular and oocyte measures in early and mid-lactation Holstein

cows. Theriogenology 2002;57:949–961.

Ferguson JD, Galligan DT, Thomsen N. Principal descriptors of body condition score

in Holstein cows. J Dairy Sci 1994;77:2695–2703.

Pieterse MC, Vos PL, Kruip TA, Wurth YA, van Beneden TH, Willemse AH, Taverne

MA. Transvaginal ultrasound guided follicular aspiration of bovine oocytes.

Theriogenology 1991;35:857–862.

Sasamoto Y, Sakaguchi M, Katagiri S, Yamada Y, Takahashi Y. The effects of twisting

and type of aspiration needle on the efficiency of transvaginal ultrasound-guided ovum

pick-up in cattle. J Vet Med Sci 2003;65:1083–1086.

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification

of total lipides from animal tissues. J Biol Chem 1957;226:497–509.

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J

Biochem Physiol 1959;37:911–917.

56

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Chen Z, Liang Q, Wu Y, Gao Z, Kobayashi S, Patel J, Li C, Cai F, Zhang Y, Liang C,

Chiba H, Hui SP. Comprehensive lipidomic profiling in serum and multiple tissues from

a mouse model of diabetes. Metabolomics 2020;16:Article 115.

Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH, Jr., Murphy

RC, Raetz CR, Russell DW, Subramaniam S. LMSD: LIPID MAPS structure database.

Nucleic Acids Res 2007;35:D527–532.

Santos P, Fontes P, Franchi F, Nogueira M, Belaz K, Tata A, Eberlin M, Sudano M,

Barros C, Castilho A. Lipid profiles of follicular fluid from cows submitted to ovarian

superstimulation. Theriogenology 2017;94:64–70.

Rohart F, Gautier B, Singh A, KA LC. mixOmics: An R package for 'omics feature

selection and multiple data integration. PLoS Comput Biol 2017;13:Article e1005752.

Del Collado M, da Silveira JC, Sangalli JR, Andrade GM, Sousa L, Silva LA, Meirelles

FV, Perecin F. Fatty acid binding protein 3 and transzonal projections are involved in

lipid accumulation during in vitro maturation of bovine oocytes. Sci Rep 2017;7:Article

2645.

Uzbekova S, Elis S, Teixeira-Gomes AP, Desmarchais A, Maillard V, Labas V. MALDI

mass spectrometry imaging of lipids and gene expression reveals differences in fatty

acid metabolism between follicular compartments in porcine ovaries. Biology

2015;4:216–236.

Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM. Fatty acid

binding proteins from different tissues show distinct patterns of fatty acid interactions.

Biochemistry 2000;39:7197–7204.

Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid

elongases in determination of de novo synthesized monounsaturated fatty acid species.

J Lipid Res 2010;51:1871–1877.

Brøns C, Grunnet LG. Skeletal muscle lipotoxicity in insulin resistance and type 2

diabetes: a causal mechanism or an innocent bystander? Eur J Endocrinol

2017;176:R67–78.

Gehrmann W, Elsner M, Lenzen S. Role of metabolically generated reactive oxygen

species for lipotoxicity in pancreatic β-cells. Diabetes Obes Metab 2010;12 Suppl

2:149–158.

Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity.

Biochim Biophys Acta Mol Cell Biol Lipids 2010;1801:246–251.

Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM. The biosynthesis of

hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the

gene for stearoyl-CoA desaturase 1. J Biol Chem 2000;275:30132–30138.

Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA

desaturase. Am J Physiol Endocrinol Metab 2009;297:E28–37.

57

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z, Wang X, Murray AJ, Bellafante E,

Virtue S, Vidal-Puig A, Allison M, Davies SE, Koulman A, Vacca M, Griffin JL. Lipid

zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology

2017;65:1165–1180.

Kaestner KH, Ntambi J, Kelly Jr T, Lane M. Differentiation-induced gene expression

in 3T3-L1 preadipocytes: a second differentially expressed gene encoding stearoyl-CoA

desaturase. J Biol Chem 1989;264:14755–14761.

Aardema H, Vos PL, Gadella BM. Cumulus cells protect the oocyte against saturated

free fatty acids. Anim Reprod 2018;15:737–750.

Wu LL, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat

diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased

fertilization rates. Endocrinology 2010;151:5438–5445.

Leroy JL, Opsomer G, De Vliegher S, Vanholder T, Goossens L, Geldhof A, Bols PE,

de Kruif A, Van Soom A. Comparison of embryo quality in high-yielding dairy cows,

in dairy heifers and in beef cows. Theriogenology 2005;64:2022–2036.

Nagano M, Katagiri S, Takahashi Y. ATP content and maturational/developmental

ability of bovine oocytes with various cytoplasmic morphologies. Zygote 2006;14:299–

304.

Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision

during oocyte maturation and early embryo development. Reprod Domest Anim

2009;44 Suppl 3:50–58.

Wathes DC, Cheng Z, Bourne N, Taylor VJ, Coffey MP, Brotherstone S. Differences

between primiparous and multiparous dairy cows in the inter-relationships between

metabolic traits, milk yield and body condition score in the periparturient period.

Domest Anim Endocrinol 2007;33:203–225.

Cozzi G, Ravarotto L, Gottardo F, Stefani AL, Contiero B, Moro L, Brscic M, Dalvit P.

Short communication: reference values for blood parameters in Holstein dairy cows:

effects of parity, stage of lactation, and season of production. J Dairy Sci 2011;94:3895–

3901.

Abeni F, Petrera F, Le Cozler Y. Effects of feeding treatment on growth rates, metabolic

profiles and age at puberty, and their relationships in dairy heifers. Animal

2019;13:1020–1029.

Chelikani PK, Ambrose DJ, Keisler DH, Kennelly JJ. Effects of dietary energy and

protein density on plasma concentrations of leptin and metabolic hormones in dairy

heifers. J Dairy Sci 2009;92:1430–1441.

Hagemann LJ, Beaumont SE, Berg M, Donnison MJ, Ledgard A, Peterson AJ,

Schurmann A, Tervit HR. Development during single IVP of bovine oocytes from

dissected follicles: interactive effects of estrous cycle stage, follicle size and atresia.

58

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Mol Reprod Dev 1999;53:451–458.

Hendriksen PJ, Steenweg WN, Harkema JC, Merton JS, Bevers MM, Vos PL, Dieleman

SJ. Effect of different stages of the follicular wave on in vitro developmental

competence of bovine oocytes. Theriogenology 2004;61:909–920.

Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE. A

novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001;107:813–822.

Schmid A, Collomb M, Sieber R, Bee G. Conjugated linoleic acid in meat and meat

products: A review. Meat Sci 2006;73:29–41.

Popova T, Gonzales-Barron U, Cadavez V. A meta-analysis of the effect of pasture

access on the lipid content and fatty acid composition of lamb meat. Food Res Int

2015;77:476–483.

Hofstetter P, Frey H-J, Gazzarin C, Wyss U, Kunz P. Dairy farming: Indoor v. pasturebased feeding. J Agric Sci 2014;152:994–1011.

Kolver ES, Muller LD. Performance and nutrient intake of high producing Holstein

cows consuming pasture or a total mixed ration. J Dairy Sci 1998;81:1403–1411.

Washburn SP, White SL, Green JT, Jr., Benson GA. Reproduction, mastitis, and body

condition of seasonally calved Holstein and Jersey cows in confinement or pasture

systems. J Dairy Sci 2002;85:105–111.

French P, Stanton C, Lawless F, O'Riordan EG, Monahan FJ, Caffrey PJ, Moloney AP.

Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from

steers offered grazed grass, grass silage, or concentrate-based diets. J Anim Sci

2000;78:2849–2855.

Green CD, Olson LK. Modulation of palmitate-induced endoplasmic reticulum stress

and apoptosis in pancreatic β-cells by stearoyl-CoA desaturase and Elovl6. Am J

Physiol Endocrinol Metab 2011;300:E640–649.

Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa

M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T,

Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone

H, Toyoshima H, Osuga J, Yamada N. Crucial role of a long-chain fatty acid elongase,

Elovl6, in obesity-induced insulin resistance. Nat Med 2007;13:1193–1202.

Weiss-Hersh K, Garcia AL, Marosvölgyi T, Szklenár M, Decsi T, Rühl R. Saturated and

monounsaturated fatty acids in membranes are determined by the gene expression of

their metabolizing enzymes SCD1 and ELOVL6 regulated by the intake of dietary fat.

Eur J Nutr 2020;59:2759–2769.

Buttchereit N, Stamer E, Junge W, Thaller G. Evaluation of five lactation curve models

fitted for fat:protein ratio of milk and daily energy balance. J Dairy Sci 2010;93:1702–

1712.

Coffey MP, Simm G, Brotherstone S. Energy balance profiles for the first three

59

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

lactations of dairy cows estimated using random regression. J Dairy Sci 2002;85:2669–

2678.

Nishiura A, Sasaki O, Tanigawa T, Kubota A, Takeda H, Saito Y. Prediction of energy

balance from milk traits of Holsteins in Japan. Anim Sci J 2022;93:Article e13757.

National Research Council. Nutrient requirements of dairy cattle: 2001. Washington,

D.C.: National Academies Press; 2001.

Ramos-Nieves JM, Thering BJ, Waldron MR, Jardon PW, Overton TR. Effects of anion

supplementation to low-potassium prepartum diets on macromineral status and

performance of periparturient dairy cows. J Dairy Sci 2009;92:5677–5691.

Blondin P, Sirard MA. Oocyte and follicular morphology as determining characteristics

for developmental competence in bovine oocytes. Mol Reprod Dev 1995;41:54–62.

Matsuzaka T, Shimano H. Elovl6: a new player in fatty acid metabolism and insulin

sensitivity. J Mol Med 2009;87:379–384.

Sánchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta

2012;1822:1896–1912.

Beam SW, Butler WR. Effects of energy balance on follicular development and first

ovulation in postpartum dairy cows. J Reprod Fertil Suppl 1999;54:411–424.

Dubuc J, Duffield TF, Leslie KE, Walton JS, LeBlanc SJ. Risk factors and effects of

postpartum anovulation in dairy cows. J Dairy Sci 2012;95:1845–1854.

Giuliodori MJ, Delavaud C, Chilliard Y, Becú-Villalobos D, Lacau-Mengido I, de la

Sota RL. High NEFA concentrations around parturition are associated with delayed

ovulations in grazing dairy cows. Livest Sci 2011;141:123–128.

Kawashima C, Sakaguchi M, Suzuki T, Sasamoto Y, Takahashi Y, Matsui M, Miyamoto

A. Metabolic profiles in ovulatory and anovulatory primiparous dairy cows during the

first follicular wave postpartum. J Reprod Dev 2007;53:113–120.

Tanaka T, Arai M, Ohtani S, Uemura S, Kuroiwa T, Kim S, Kamomae H. Influence of

parity on follicular dynamics and resumption of ovarian cycle in postpartum dairy cows.

Anim Reprod Sci 2008;108:134–143.

Butler ST, Pelton SH, Butler WR. Energy balance, metabolic status, and the first

postpartum ovarian follicle wave in cows administered propylene glycol. J Dairy Sci

2006;89:2938–2951.

Poirier M, Tesfaye D, Hailay T, Salilew-Wondim D, Gebremedhn S, Rings F, Neuhoff

C, Schellander K, Hoelker M. Metabolism-associated genome-wide epigenetic changes

in bovine oocytes during early lactation. Sci Rep 2020;10:Article 2345.

Desmet KL, Van Hoeck V, Gagné D, Fournier E, Thakur A, O'Doherty AM, Walsh CP,

Sirard MA, Bols PE, Leroy JL. Exposure of bovine oocytes and embryos to elevated

non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic

signatures in resultant blastocysts. BMC genom 2016;17:Article 1004.

60

[107] Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related

disorders. FASEB J 2001;15:312–321.

[108] Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose

metabolism in determining oocyte developmental competence. Reproduction

2010;139:685–695.

[109] Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through

the cumulus complex. Hum Reprod Update 2007;13:289–312.

[110] Nunn WD. A molecular view of fatty acid catabolism in Escherichia coli. Microbiol

Rev 1986;50:179–192.

[111] Sartori R, Sartor-Bergfelt R, Mertens SA, Guenther JN, Parrish JJ, Wiltbank MC.

Fertilization and early embryonic development in heifers and lactating cows in summer

and lactating and dry cows in winter. J Dairy Sci 2002;85:2803–2812.

[112] Fair T. Follicular oocyte growth and acquisition of developmental competence. Anim

Reprod Sci 2003;78:203–216.

[113] Aerts JM, Bols PE. Ovarian follicular dynamics: a review with emphasis on the bovine

species. Part I: Folliculogenesis and pre-antral follicle development. Reprod Domest

Anim 2010;45:171–179.

[114] Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA,

Ruegg PS, Sheldon IM, Stevenson JS. Invited review: Learning from the future-A

vision for dairy farms and cows in 2067. J Dairy Sci 2018;101:3722–3741.

61

Summary in Japanese

過去数十年間の産乳能力を重視した乳牛の遺伝的改良により、乳期当たりの乳量は

増加を続けてきた。その結果、高泌乳牛では分娩後の負のエネルギーバランスに伴い

血液中の遊離脂肪酸(FFA)濃度が上昇し、この高濃度 FFA により種々の疾病および

細胞の機能障害が誘発される。通常、細胞内に流入した過剰な FFA は毒性の無い脂

質の貯蔵形態であるトリアシルグリセロール(TAG)に変換される。しかし、細胞の

処理能力を超える過剰な FFA が流入すると、FFA は細胞内に蓄積し、細胞毒性を引

き起こす。実際に、高濃度の FFA を添加して牛卵子を培養すると、卵子に脂質毒性

が発現することが報告されている。液体クロマトグラフィー質量分析法(LC/MS)を

用いて泌乳牛の卵子の FFA と TAG の組成を調べることは、卵子への脂質毒性の可能

性について調査するために有用な方法であるが、これまでに泌乳牛の卵子の FFA と

TAG の組成を調べた報告はない。そこで本研究で、特に分娩後早期の牛卵子の脂質

毒性について評価するために、泌乳牛の血液と卵子のエネルギー代謝関連脂質(FFA

および TAG)の組成を調べて泌乳ステージ間で比較した。第 1 章では産乳量の少な

い放牧主体の牛群(平均 305 日乳量 7,710 kg)を、第 2 章では産乳量の多い濃厚飼料

主体で飼養される牛群(平均 305 日乳量 9,123 kg)を用いて、卵子の FFA と TAG を

調べた。

第 1 章では、3 つの泌乳ステージにあるホルスタイン種 14 頭を用いた。泌乳初期

群(分娩後 25~47 日、n = 6)、泌乳ピーク群(分娩後 61~65 日、n = 4)、泌乳中期群

(分娩後 160~202 日、n = 4)、および 未経産牛(n = 4、コントロール群)から血漿

および卵子サンプルをそれぞれ尾静脈穿刺と経腟採卵法(OPU)により採取した。サ

ンプル当たり 100 μL の血漿および 5 個の卵子を用いて LC/MS により FFA と TAG の

組成を定性的、半定量的に解析した。その結果、血漿と卵子で合計 6 種類の FFA お

よび 45 種類の TAG が同定された。血漿 FFA 濃度と卵子 TAG 量は正の相関を示した

(r = 0.55、P < 0.05)。泌乳初期群は未経産牛よりも卵子 TAG 量が高く(P < 0.05)

泌乳ピーク群と泌乳中期群はその中間の卵子 TAG 量を示した。しかし、卵子 FFA 量

はいずれの泌乳期においても同程度であった。クラスター解析により、血漿と卵子の

FFA と TAG は 5 種類のグループ:(1)二重結合数 0 の飽和 FFA、(2)二重結合数 1

または 2 の不飽和 FFA、

(3)炭素数 44~48 の TAG、

(4)炭素数 50~54 の TAG およ

び(5)炭素数 56~58 の TAG に分類された。脂肪酸の構成割合に関しては、泌乳初

期群と泌乳ピーク群では泌乳中期群と未経産牛に比べて、血漿中のステアリン酸

(FFA 18:0)の割合が低く、オレイン酸(FFA 18:1)の割合が高かった(P < 0.05)。し

かし、卵子 FFA と卵子 TAG の脂肪酸組成に関しては、泌乳期のステージによる差異

は殆どなかった。以上の結果より、放牧主体で飼養される泌乳初期の牛では、未経産

62

牛に比べて卵子 TAG 量が増加したが、卵子 FFA 量は増加しなかった。卵子内で貯蔵

できる TAG 量には限界があることから、泌乳初期の牛の卵子の TAG の増加は、卵子

における過剰な FFA を TAG に変換して貯蔵する能力の低下と、それに伴う卵子の脂

質毒性のリスク増加を示唆した。

一方で、近年の高泌乳牛の典型的な飼養形態は濃厚飼料主体の飼養であり、放牧牛

に比べて摂取エネルギー、消費エネルギーともに大きい代謝状態を示す。このような

エネルギー代謝の違いは卵子の脂質組成に影響する可能性があるため、濃厚飼料主体

で飼養される牛の卵子の脂質組成を調べる必要がある。

第 2 章では、濃厚飼料主体で飼養されていた 4 つの泌乳ステージにあるホルスタイ

ン種 20 頭を用いた。分娩後 20~30 日群(n = 5)、分娩後 40~50 日群(n = 5)、分娩

後 60~80 日群(n = 5)および分娩後 130~160 日群(n = 5)から、第 1 章と同様の方

法で、血漿と卵子のサンプルを採取し、LC/MS により FFA と TAG の組成を解析し

た。採卵前のエネルギーバランスと卵子の脂質との関係について調べるために、供試

牛の OPU 前 3 週間の毎日のエネルギーバランスを計算した。血漿 FFA 濃度は分娩後

20~30 日で高く、50 日までに低下し、それ以降の供試期間中は低いレベルを維持し

た。卵子の FFA 量と TAG 量は、分娩後日数に伴う血漿 FFA の変化と同様の変化を示

した。血漿 FFA 濃度と卵子 FFA 量(r = 0.63)、卵子 FFA 量と卵子 TAG 量(r = 0.46)

の間にそれぞれ正の相関が見られた(P < 0.05)。さらに、卵子 FFA 量は OPU 前 21 日

間、14 日間および 7 日間の平均エネルギーバランスとそれぞれ負の相関を示し(そ

れぞれ r = -0.70、r = -0.64 および r = -0.58、P < 0.05)、その程度は OPU 前のエネルギ

ーバランスを調べた期間が長いほど卵子 FFA 量と強い負の相関を示した(r = -0.70、

P < 0.05)。卵子 FFA 量は、卵子 FFA 不飽和化マーカー(飽和 FFA を単価不飽和 FFA

に変換する不飽和化反応の活性の指標)である FFA 16:1/16:0 比および FFA 18:1/18:0

比とそれぞれ正の相関を示した(それぞれ r = 0.79 および r = 0.56、P < 0.05)。また、

血漿と卵子の FFA 16:1/16:0 比(r = 0.70)および血漿と卵子の FFA 18:1/18:0 比(r =

0.51)の間にも、それぞれ正の相関が見られた(P < 0.05)。すなわち、血漿と卵子で

同様の FFA の量と組成の関係が示された。

本研究は異なる泌乳ステージの牛の卵子の脂質組成を調べた初の研究であり、その

結果、濃厚飼料主体で飼養される牛における分娩後早期の卵子の FFA と TAG の増加

および FFA 不飽和化の活性化が示された。これらの知見は、特に濃厚飼料主体で飼

養される高泌乳牛において、分娩後早期の卵子に FFA の脂質毒性がある可能性を示

唆するものであった。今後、分娩後早期の牛の卵子への脂質毒性がその後の繁殖性に

及ぼす影響について調査するために、卵子中の活性酸素種の産生や小胞体ストレス等

の脂質毒性の有無および程度について明らかにする必要がある。

63

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る