リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Environment-friendly utilization of squid pen with water: Production of β-chitin nanofibers and peptides for lowering blood pressure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Environment-friendly utilization of squid pen with water: Production of β-chitin nanofibers and peptides for lowering blood pressure

Osada, Mitsumasa Nishiwaki, Mizuki Watanabe, Takashi 信州大学

2021.09.03

概要

Chitin, an abundant biopolymer on Earth, represents a resource for sustainable functional materials. However, traditional β-chitin production methods involve alkaline treatment at approximately 90 °C for its separation from the protein, thus not suitable as a functional peptide, as it is mixed with an alkaline aqueous solution. This study examined the conversion of squid pen into solid β-chitin and water-soluble peptides using only water at temperatures of 150–250 °C for 30–120 min. Solid β-chitin was converted to its nanofiber form and the physicochemical properties of the β-chitin nanofibers were almost the same as those produced by the traditional method. Because this method uses only water, the protein in the squid pen may also be a functional peptide for lowering blood pressure, by inhibiting the Angiotensin-1 converting enzyme. High-temperature water treatment is a promising environment-friendly technique for complete utilization of squid pen components, including β-chitin and protein.

この論文で使われている画像

参考文献

[1]

M. Osada, C. Miura, Y.S. Nakagawa, M. Kaihara, M. Nikaido, K. Totani, Effect of suband supercritical water treatments on the physicochemical properties of crab shell chitin

and its enzymatic degradation, Carbohydr. Polym. 134 (2015) 718–725.

https://doi.org/10.1016/j.carbpol.2015.08.066.

[2]

J.N. Bemiller, R.L. Whistler, Alkaline Degradation of Amino Sugars, J. Org. Chem. 27

(1962) 1161–1164. https://doi.org/10.1021/jo01051a009

[3]

K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber

nanocomposites. 1. Processing and swelling behavior, Biomacromolecules. 4 (2003) 657–

665. https://doi.org/10.1021/bm020127b.

[4]

S. Ifuku, H. Saimoto, Chitin nanofibers: Preparations, modifications, and applications,

Nanoscale. 4 (2012) 3308–3318. https://doi.org/10.1039/c2nr30383c.

[5]

P. Sikorski, R. Hori, M. Wada, Revisit of α-chitin crystal structure using high resolution

X-ray diffraction data, Biomacromolecules. 10 (2009) 1100–1105.

https://doi.org/10.1021/bm801251e.

[6]

F.C. Yang, R.D. Peters, H. Dies, M.C. Rheinstädter, Hierarchical, self-similar structure in

native squid pen, Soft Matter. 10 (2014) 5541–5549. https://doi.org/10.1039/c4sm00301b.

[7]

A.T. Quitain, H. Daimon, K. Fujie, S. Katoh, T. Moriyoshi, Microwave-assisted

hydrothermal degradation of silk protein to amino acids, Ind. Eng. Chem. Res. 45 (2006)

4471–4474. https://doi.org/10.1021/ie0580699.

30

[8]

T. Powell, S. Bowra, H.J. Cooper, Subcritical Water Processing of Proteins: An

Alternative to Enzymatic Digestion?, Anal. Chem. 88 (2016) 6425–6432.

https://doi.org/10.1021/acs.analchem.6b01013.

[9]

T.M. Aida, M. Oshima, R.L. Smith, Controlled Conversion of Proteins into HighMolecular-Weight Peptides without Additives with High-Temperature Water and Fast

Heating Rates, ACS Sustain. Chem. Eng. 5 (2017) 7709–7715.

https://doi.org/10.1021/acssuschemeng.7b01146.

[10]

M. Osada, H. Kobayashi, T. Miyazawa, S. Suenaga, M. Ogata, Non-catalytic conversion

of chitin into Chromogen I in high-temperature water, Int. J. Biol. Macromol. 136 (2019)

994–999. https://doi.org/10.1016/j.ijbiomac.2019.06.123.

[11]

S. Suenaga, N. Nikaido, K. Totani, K. Kawasaki, Y. Ito, K. Yamashita, M. Osada, Effect

of purification method of β-chitin from squid pen on the properties of β-chitin nanofibers,

Int. J. Biol. Macromol. 91 (2016) 987–993.

https://doi.org/10.1016/j.ijbiomac.2016.06.060.

[12]

Y. Nishiyama, Y. Noishiki, M. Wada, X-ray structure of anhydrous β-chitin at 1 Å

resolution, Macromolecules. 44 (2011) 950–957. https://doi.org/10.1021/ma102240r.

[13]

D. Sawada, Y. Nishiyama, P. Langan, V.T. Forsyth, S. Kimura, M. Wada, Direct

determination of the hydrogen bonding arrangement in anhydrous β-chitin by neutron

fiber diffraction, Biomacromolecules. 13 (2012) 288–291.

https://doi.org/10.1021/bm201512t.

31

[14]

D. Sawada, Y. Nishiyama, P. Langan, V.T. Forsyth, S. Kimura, M. Wada, Water in

crystalline fibers of dihydrate β-chitin results in unexpected absence of intramolecular

hydrogen bonding, PLoS One. 7 (2012) 4–11.

https://doi.org/10.1371/journal.pone.0039376.

[15]

Y. Fan, T. Saito, A. Isogai, Preparation of chitin nanofibers from squid Pen β-chitin by

simple mechanical treatment under acid conditions, Biomacromolecules. 9 (2008) 1919–

1923. https://doi.org/10.1021/bm800178b.

[16]

S. Suenaga, K. Totani, Y. Nomura, K. Yamashita, I. Shimada, H. Fukunaga, N.

Takahashi, M. Osada, Effect of acidity on the physicochemical properties of α- and βchitin nanofibers, Int. J. Biol. Macromol. 102 (2017) 358–366.

https://doi.org/10.1016/j.ijbiomac.2017.04.011.

[17]

S. Suenaga, M. Osada, Self-Sustaining Cellulose Nanofiber Hydrogel Produced by

Hydrothermal Gelation without Additives, ACS Biomater. Sci. Eng. 4 (2018) 1536–1545.

https://doi.org/10.1021/acsbiomaterials.8b00026.

[18]

S. Suenaga, M. Osada, Parameters of Hydrothermal Gelation of Chitin Nanofibers

Determined Using a Severity Factor, Cellulose. 25 (2018) 6873–6885.

https://doi.org/10.1007/s10570-018-2053-3.

[19]

S. Suenaga, M. Osada, Preparation of β-chitin nanofiber aerogels by lyophilization, Int. J.

Biol. Macromol. 126 (2019) 1145–1149. https://doi.org/10.1016/j.ijbiomac.2019.01.006.

32

[20]

J. Machida, S. Suenaga, M. Osada, Effect of the Degree of Acetylation on the

Physicochemical Properties of α-Chitin Nanofibers, Int. J. Biol. Macromol. 155 (2020)

350–357. https://doi.org/10.1016/j.ijbiomac.2020.03.213.

[21]

Y. Ogawa, R. Hori, U.J. Kim, M. Wada, Elastic Modulus in the Crystalline Region and

the Thermal Expansion Coefficients of α-Chitin Determined using Synchrotron Radiated

X-ray Diffraction, Carbohydr. Polym. 83 (2011) 1213–1217.

https://doi.org/10.1016/j.carbpol.2010.09.025.

[22]

L. Liu, R. Wang, J. Yu, J. Jiang, K. Zheng, L. Hu, Z. Wang, Y. Fan, Robust Self-Standing

Chitin Nanofiber/Nanowhisker Hydrogels with Designed Surface Charges and Ultralow

Mass Content via Gas Phase Coagulation, Biomacromolecules. 17 (2016) 3773–3781.

https://doi.org/10.1021/acs.biomac.6b01278.

[23]

R. Jayakumar, V. V. Divya Rani, K.T. Shalumon, P.T.S. Kumar, S. V. Nair, T. Furuike,

H. Tamura, Bioactive and Osteoblast Cell Attachment Studies of Novel α- and β-Chitin

Membranes for Tissue-Engineering Applications, Int. J. Biol. Macromol. 45 (2009) 260–

264. https://doi.org/10.1016/j.ijbiomac.2009.06.002.

[24]

A. Kaur, B.A. Kehinde, P. Sharma, D. Sharma, S. Kaur, Recently Isolated Food-derived

Antihypertensive Hydrolysates and Peptides: A Review, Food Chem. 346 (2021) 128719.

https://doi.org/10.1016/j.foodchem.2020.128719.

[25]

L. Xue, R. Yin, K. Howell, P. Zhang, Activity and Bioavailability of Food Protein-derived

Angiotensin-I-converting Enzyme–inhibitory Peptides, Compr. Rev. Food Sci. Food Saf.

20 (2021) 1150–1187. https://doi.org/10.1111/1541-4337.12711.

33

[26]

M. Osada, C. Miura, Y.S. Nakagawa, M. Kaihara, M. Nikaido, K. Totani, Effect of suband supercritical water pretreatment on enzymatic degradation of chitin, Carbohydr.

Polym. 88 (2012) 308–312. https://doi.org/10.1016/j.carbpol.2011.12.007.

[27]

M. Osada, C. Miura, Y.S. Nakagawa, M. Kaihara, M. Nikaido, K. Totani, Effects of

supercritical water and mechanochemical grinding treatments on physicochemical

properties of chitin, Carbohydr. Polym. 92 (2013) 1573–1578.

https://doi.org/10.1016/j.carbpol.2012.10.068.

[28]

W. Wagner, A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of

ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data. 31

(2002) 387–535. https://doi.org/10.1063/1.1461829.

[29]

R.L. Lavall, O.B.G. Assis, S.P. Campana-Filho, β-Chitin from the Pens of Loligo sp.:

Extraction and Characterization, Bioresour. Technol. 98 (2007) 2465–2472.

https://doi.org/10.1016/j.biortech.2006.09.002.

[30]

O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the

Folin phenol reagent., J. Biol. Chem. 193 (1951) 265–275. https://doi.org/10.1016/s00219258(19)52451-6.

[31]

D.W. Cushman, H.S. Cheung, Spectrophotometric assay and properties of the angiotensinconverting enzyme of rabbit lung, Biochem. Pharmacol. 20 (1971) 1637–1648.

https://doi.org/10.1016/0006-2952(71)90292-9.

34

[32]

J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W. Argüelles-Monal, J. Desbrières, M.

Rinaudo, An infrared investigation in relation with chitin and chitosan characterization,

Polymer. 42 (2001) 3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8.

[33]

A. Fahmi, S. Morimura, H.C. Guo, T. Shigematsu, K. Kida, Y. Uemura, Production of

Angiotensin I Converting Enzyme Inhibitory Peptides from Sea Bream Scales, Process

Biochem. 39 (2004) 1195–1200. https://doi.org/10.1016/S0032-9592(03)00223-1.

[34]

M. Sato, T. Hosokawa, T. Yamaguchi, T. Nakano, K. Muramoto, T. Kahara, K.

Funayama, A. Kobayashi, T. Nakano, Angiotensin I-Converting Enzyme Inhibitory

Peptides Derived from Wakame (Undaria pinnatifida) and Their Antihypertensive Effect

in Spontaneously Hypertensive Rats, J. Agric. Food Chem. 50 (2002) 6245–6252.

https://doi.org/10.1021/jf020482t.

[35]

M. Osada, K. Kikuta, K. Yoshida, K. Totani, M. Ogata, T. Usui, Non-catalytic synthesis

of Chromogen i and III from N-acetyl-d-glucosamine in high-temperature water, Green

Chem. 15 (2013) 2960–2966. https://doi.org/10.1039/c3gc41161c.

[36]

M. Osada, K. Kikuta, K. Yoshida, K. Totani, M. Ogata, T. Usui, Non-catalytic

dehydration of N,N′-diacetylchitobiose in high-temperature water, RSC Adv. 4 (2014)

33651–33657. https://doi.org/10.1039/c4ra06319h.

[37]

M. Osada, S. Shoji, S. Suenaga, M. Ogata, Conversion of N-acetyl-D-glucosamine to

nitrogen-containing chemicals in high-temperature water, Fuel Process. Technol. 195

(2019) 106154. https://doi.org/10.1016/j.fuproc.2019.106154.

35

TOC/Abstract Graphic.

Squid pen

High-temperature

water treatment

β-Chitin

(recovered as

solid product)

Peptide

(recovered as

water-soluble

product)

Wet pulverization

using a water jet

β-Chitin

Nanofiber

Peptide for

lowering

blood

pressure

36

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る