リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stars in subtropical Japan: a new gregarious Meteorus species (Hymenoptera, Braconidae, Euphorinae) constructs enigmatic star-shaped pendulous communal cocoons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stars in subtropical Japan: a new gregarious Meteorus species (Hymenoptera, Braconidae, Euphorinae) constructs enigmatic star-shaped pendulous communal cocoons

Fujie, Shunpei Shimizu, Sou Tone, Koichi Matsuo, Kazunori Maeto, Kaoru 神戸大学

2021.10.29

概要

A new gregarious braconid parasitoid wasp of Euphorinae, Meteorus stellatus Fujie, Shimizu & Maeto sp. nov., is described from the Ryukyu Islands in Japan, based on an integrative taxonomic framework. The phylogenetic position of the new species within the Meteorini was analyzed based on DNA fragments of the mitochondrial cytochrome c oxidase 1 (CO1) and the nuclear 28S rDNA genes. The new species was recovered as a member of the versicolor complex of the versicolor + rubens subclade within the pulchricornis clade. The new species is a gregarious parasitoid of two Macroglossum species (Lepidoptera: Sphingidae) and constructs single or several unique star-shaped cocoon masses separately suspended by very long threads. The evolution of gregariousness and spherical cocoon masses is discussed.

この論文で使われている画像

参考文献

Aguirre H, Shaw SR (2014) Neotropical species of Meteorus Haliday (Hymenoptera: Braconidae: Meteorinae) parasitizing Arctiinae (Lepidoptera: Noctuoidea: Erebidae). Zootaxa

3779: 353–367. https://doi.org/10.11646/zootaxa.3779.3.3

Askari A, Mertins JW, Coppel HC (1977) Developmental biology and immature stages of

Meteorus pulchricornis in the laboratory. Annals of the Entomological Society of America

70: 655–659. https://doi.org/10.1093/aesa/70.5.655

Barrantes G, Triana E, Shaw SR, Jones GZ (2011) Characteristics of the cocoon and natural

history of the gregarious Meteorus restionis sp. n. (Hymenoptera, Braconidae, Meteorinae)

from Costa Rica. Journal of Hymenoptera Research 20: 9–21. https://doi.org/10.3897/

jhr.29.867

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled

J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA,

du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie

D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: An advanced software platform

for Bayesian evolutionary analysis. PLoS Computational Biology 15: e1006650. https://

doi.org/10.1371/journal.pcbi.1006650

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated

alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.

https://doi.org/10.1093/bioinformatics/btp348

Chen X-X, He J-H, Ma Y (2004) Fauna Sinica. Insecta Vol. 37. Hymenoptera. Braconidae (II).

Science Press, Beijing, 581 pp.

42

Shunpei Fujie et al. / Journal of Hymenoptera Research 86: 19–45 (2021)

Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data

sets. Systematic Biology 62: 707–724. https://doi.org/10.1093/sysbio/syt033

Gauld ID, Bolton B [Eds] (1988) The Hymenoptera. Oxford University Press, Oxford and The

Natural History Museum, London, 332 pp.

Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER:

program-oriented format conversion of DNA and protein alignments. Nucleic Acids Research 38: W14–W18. https://doi.org/10.1093/nar/gkq321

Godfray HCJ (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton University

Press, Princeton, 473 pp. https://doi.org/10.1515/9780691207025

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms

and methods to estimate maximum-likelihood phylogenies: assessing the performance of

PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Hamilton WD (1967) Extraordinary sex ratios. Science 156: 477–488. https://doi.org/10.1126/

science.156.3774.477

Harry M, Solignac M, Lachaise D, (1996) Adaptive radiation in the Afrotropical region of the

Paleotropical genus Lissocephala (Drosophilidae) on the pantropical genus Ficus (Moraceae). Journal of Biogeography 23: 543–552. https://doi.org/10.1111/j.1365-2699.1996.

tb00016.x

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV (2018) UFBoot2: improving the

ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://

doi.org/10.1093/molbev/msx281

Huddleston T (1980) A revision of the western Palaearctic species of the genus Meteorus (Hymenoptera: Braconidae). Bulletin of the British Museum (Natural History), Entomology

series 41: 1–58.

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–

1166. https://doi.org/10.1093/bib/bbx108

Katoh K, Toh H, (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9: 212.

https://doi.org/10.1186/1471-2105-9-212

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

https://doi.org/10.1093/molbev/mst010

Klimov PB, Skoracki M, Bochkov AV (2019) Cox1 barcoding versus multilocus species delimitation: validation of two mite species with contrasting effective population sizes. Parasites

Vectors 12: e8. https://doi.org/10.1186/s13071-018-3242-5

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary

genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–

1549. https://doi.org/10.1093/molbev/msy096

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. https://doi.org/10.1093/

molbev/msw260

A new gregarious Meteorus species from Japan

43

Lefort V, Longueville J-E, Gascuel O (2017) SMS: smart model selection in PhyML. Molecular

Biology and Evolution 34: 2422–2424. https://doi.org/10.1093/molbev/msx149

Maeto K (1989a) Systematic studies on the tribe Meteorini from Japan (Hymenoptera, Braconide) V. The pulchricornis group of the genus Meteorus (1). Japanese Journal of Entomology

57: 581–595.

Maeto K (1989b) Systematic studies on the tribe Meteorini (Hymenoptera: Braconidae) from

Japan. VI. The pulchricornis group of the genus Meteorus Haliday (2). Japanese Journal of

Entomology 57: 768–777.

Maeto K (1990a) Systematic studies on the tribe Meteorini (Hymenoptera: Braconidae) from

Japan. VII. The group of Meteorus ictericus and M. rubens. Japanese Journal of Entomology

58: 81–94.

Maeto K (1990b) Phylogenetic relationships and host associations of the subfamily Meteorinae

Cresson (Hymenoptera, Braconidae). Japanese Journal of Entomology 58: 383–396.

Maeto K (2018) Polyphagous koinobiosis: the biology and biocontrol potential of a braconid

endoparasitoid of exophytic caterpillars. Applied Entomology and Zoology 53: 433–446.

https://doi.org/10.1007/s13355-018-0581-9

Maeto K, Arakaki N (2005) Gregarious emergence of Macrostomion sumatranum (Hymenoptera: Braconidae; Rogadinae) from the mummified, full-grown larvae of Theretra silhetensis

(Lepidoptera: Sphingidae). Entomological Science 8: 131–132. https://doi.org/10.1111/

j.1479-8298.2005.00107.x

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic

bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/

molbev/mst024

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,

Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.

org/10.1093/molbev/msaa015

Mitamura T (2013) The Handbook of Japanese Cocoon. Bun-ichi (Tokyo): 1–112. [in Japanese]

Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21: 1864–1877. https://doi.

org/10.1111/j.1365-294X.2011.05239.x

Quicke DLJ (2015) The Braconid and Ichneumonid Parasitoid Wasps. Biology, systematics, evolution and ecology. John Wiley & Sons, Ltd., Hoboken, 681 pp. https://doi.

org/10.1002/9781118907085

Quicke DLJ, Mori M, Zaldivar-Riverón A, Laurenne NM, Shaw MR (2006) Suspended mummies in Aleiodes species (Hymenoptera: Braconidae: Rogadinae) with descriptions of six

new species from western Uganda based largely on DNA sequence data. Journal of Natural

History 40: 2663–2680. https://doi.org/10.1080/00222930601121288

R Core Development Team (2020) R: a language and environment for statistical computing.

https://www.R-project.org/

Rambaut A (2006–2016) Tree Figure Drawing Tool, version 1.4.3, Institute of Evolutionary

Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/

Rambaut A, Drummond AJ (2007) Tracer: MCMC trace analysis tool v1.4.1. http://tree.bio.

ed.ac.uk/software/tracer?/

44

Shunpei Fujie et al. / Journal of Hymenoptera Research 86: 19–45 (2021)

Richards OW (1977) Hymenoptera. Introduction and key to families. Handbooks for the

Identification of British Insects, 2nd edn. 6: 1–100.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed

models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,

Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

https://doi.org/10.1093/sysbio/sys029

Schulmeister S (2003) Simultaneous analysis of basal Hymenoptera (Insecta): introducing

robust-choice sensitivity analysis. Biological Journal of Linnean Society 79: 245–275. https://doi.org/10.1046/j.1095-8312.2003.00233.x

Shaw MR, Huddleston T (1991) Classification and biology of Braconid wasps (Hymenoptera:

Braconidae). Handbooks for the Identification of British Insects 7(11): 1–126.

Shaw SR, Nishida K (2005) A new species of gregarious Meteorus (Hymenoptera: Braconidae)

reared from caterpillars of Venadicodia caneti (Lepidoptera: Limacodidae) in Costa Rica.

Zootaxa 1028: 49–60. https://doi.org/10.11646/zootaxa.1028.1.4

Shimizu S, Broad GR, Maeto K (2020) Integrative taxonomy and analysis of species richness patterns

of nocturnal Darwin wasps of the genus Enicospilus Stephens (Hymenoptera, Ichneumonidae,

Ophioninae) in Japan. ZooKeys 990: 1–144. https://doi.org/10.3897/zookeys.990.55542

Shirai S, Maeto K (2009) Suspending cocoons to evade ant predation in Meteorus pulchricornis,

a braconid parasitoid of exposed- living lepidopteran larvae. Entomological Science 12:

107–109. https://doi.org/10.1111/j.1479-8298.2009.00301.x

Sobczak JF, Maia DP, Moura JCMS, Costa VA, Vasconcellos-Neto J (2012) Natural history

of interaction between Meteorus sp. Haliday, 1835 (Hymenoptera: Braconidae) and its

hyperparasitoid Toxeumella albipes Girault, 1913 (Hymenoptera: Pteromalidae). Brazilian

Journal of Biology 72: 211–214. https://doi.org/10.1590/S1519-69842012000100026

Stigenberg J, Ronquist F (2011) Revision of the Western Palearctic Meteorini (Hymenoptera,

Braconidae), with a molecular characterization of hidden Fennoscandian species diversity.

Zootaxa 3084: 1–95. https://doi.org/10.11646/zootaxa.3084.1.1

Stigenberg J, Vikberg V, Belokobylskij SA (2011) Meteorus acerbiavorus sp. nov. (Hymenoptera,

Braconidae), a gregarious parasitoid of Acerbia alpina (Quensel) (Lepidoptera, Arctiidae)

in North Finland. Journal of Natural History 45: 1275–1294. https://doi.org/10.1080/0

0222933.2011.552807

Tagawa J, Fukushima H (1993) Effects of host age and cocoon position on attack rate by the

hyperparasitoid, Eurytoma sp. (Hym.: Eurytomidae), on cocoons of the parasitoid, Cotesia (= Apanteles) glomerata (Hym.: Braconidae). Entomophaga 38: 69–77. https://doi.

org/10.1007/BF02373141

Tanaka S, Ohsaki N (2006) Behavioral manipulation of host caterpillars by the primary parasitoid wasp Cotesia glomerata (L.) to construct defensive webs against hyperparasitism. Ecological Research 21: 570–577. https://doi.org/10.1007/s11284-006-0153-2

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. https://doi.

org/10.1093/nar/22.22.4673

A new gregarious Meteorus species from Japan

45

Werren JH (1983) Sex ratio evolution under local mate competition in a parasitic wasp. Evolution 37: 116–124. https://doi.org/10.1111/j.1558-5646.1983.tb05520.x

Yu DSK, van Achterberg C, Horstmann K (2016) Taxapad 2016, Ichneumonoidea 2015 Database on flash-drive. Nepean, Ontario. www.taxapad.com

van Achterberg C (1988) Revision of the subfamily Blacinae Foerster (Hymenoptera, Braconidae). Zoologische Verhandelingen Leiden 249: 1–324.

Zitani NM (2003) The evolution and adaptive significance of silk use in the Meteorinae (Hymenoptera, Braconidae). PHD Thesis. University of Wyoming, Laramie.

Zitani NM, Shaw RS (2002) From Meteorus to death star. Variations on a silk thread (Hymenoptera: Braconidae: Meteorinae). American Entomologist 48: 228–235. https://doi.

org/10.1093/ae/48.4.228

Supplementary material 1

Table S1

Authors: Shunpei Fujie, So Shimizu, Koichi Tone, Kazunori Matsuo, Kaoru Maeto

Data type: excel (.xslx) file

Explanation note: Table S1. Examined materials Meteorus stellatus sp. nov.

Copyright notice: This dataset is made available under the Open Database License

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License

(ODbL) is a license agreement intended to allow users to freely share, modify, and

use this Dataset while maintaining this same freedom for others, provided that the

original source and author(s) are credited.

Link: https://doi.org/10.3897/jhr.86.71225.suppl1

Supplementary material 2

Table S2

Authors: Shunpei Fujie, So Shimizu, Koichi Tone, Kazunori Matsuo, Kaoru Maeto

Data type: excel (.xslx) file

Explanation note: Table S2. Gene bank accession numbers for the sampled taxa in the

analyses.

Copyright notice: This dataset is made available under the Open Database License

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License

(ODbL) is a license agreement intended to allow users to freely share, modify, and

use this Dataset while maintaining this same freedom for others, provided that the

original source and author(s) are credited.

Link: https://doi.org/10.3897/jhr.86.71225.suppl2

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る