リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sr(ii) extraction by crown ether in HFC: entropy driven mechanism through H₂PFTOUD」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sr(ii) extraction by crown ether in HFC: entropy driven mechanism through H₂PFTOUD

Shirasaki, Kenji Nagai, Mitsuie Nakase, Masahiko Tabata, Chihiro Sunaga, Ayaki Yaita, Tsuyoshi Yamamura, Tomoo 京都大学 DOI:10.1039/D2RA04411K

2022

概要

The solvent extraction of Sr(II) was carried out using dicyclohexano-18-crown-6 (DCH18C6) and two HFC mixed solvents MS1 and MS2, where MS1 was composed of 30/60 (w/w)% trans-1, 2-dichloroethylene/HFC-43 (HFC-43: 1, 1, 1, 2, 2, 3, 4, 5, 5, 5-decafluoropentane) and MS2 was 5/95 (w/w)% heptane/HFC-43. Nitric acid and perfuruoro-3-6-9-trioxaundecane-1, 11-dioic acid (H₂PFTOUD) were used to study the effect of acid on the extraction. The maximum distribution ratio of Sr(II) (DSr) observed for H2PFTOUD conditions was ∼180, and >10 times larger than aqueous nitric acid conditions. The DSr value was influenced by concentrations of the DCH18C6, Sr(II), and acid, and by temperature. The composition of extracted complexes was estimated using slope analysis as an Sr(II)–anion–DCH18C6 ratio of ∼1 : 2 : 1. From the extended X-ray absorption fine structure (EXAFS) measurements of Sr(II) in the aqueous and organic phases, it is inferred that regardless of the acid used, DCH18C6 coordinates to the first coordination sphere of the Sr(II) extracted complexes and Sr(II) is hydrated (complexation with H₂PFTOUD cannot be distinguished) in the aqueous phase. Thermodynamic data were significantly changed by choice of acid, i.e., both enthalpy and entropy values were negative for nitric acid conditions, on the other hand, entropy values were large and positive for H₂PFTOUD conditions. These results have demonstrated that the combination of HFC solvent and crown ether is applicable for metal extraction.

この論文で使われている画像

参考文献

1 E. K. Rzhekhina, V. G. Karkozov, M. Y. Alyapyshev,

V. A. Babain, I. V. Smirnov, P. A. Todd, J. D. Law and

R. S. Herbst, Radiochemistry, 2007, 49, 493–498.

26932 | RSC Adv., 2022, 12, 26922–26933

View Article Online

Paper

2 B. J. Mincher, R. S. Herbst, R. D. Tillotson and S. P. Mezyk,

Solvent Extr. Ion Exch., 2007, 25, 747–755.

3 K. Nakashima, T. Maruyama, F. Kubota and M. Goto, Anal.

Sci., 2009, 25, 77–82.

4 E. Nakamura, Y. Hiruta, T. Watanabe, N. Iwasawa, D. Citterio

and K. Suzuki, Anal. Sci., 2015, 31, 923–928.

5 T. Yamamura, S. Ohta, T. Mori, I. Satoh, T. Shikama,

Y. Fujimoto and H. Tomiyasu, J. Nucl. Sci. Technol., 2010,

47, 515–520.

6 C. Tabata, M. Nakase, M. Harigai, K. Shirasaki, A. Sunaga

and T. Yamamura, Sep. Sci. Technol., 2022, 57, 1097–1110.

7 J. P. Giesy and K. Kannan, Environ. Sci. Technol., 2002, 36,

146A–152A.

8 A. Miller, J. E. Elliott, K. H. Elliott, S. Lee and F. Cyr, Environ.

Toxicol. Chem., 2015, 34, 1799–1808.

9 C. Liao, T. Wang, L. Cui, Q. Zhou, S. Duan and G. Jiang,

Environ. Sci. Technol., 2009, 43, 2099–2104.

10 B. Gockener, T. Weber, H. Rudel, M. Bucking and

M. Kolossa-Gehring, Environ. Int., 2020, 145, 106123.

11 S. Gaballah, A. Swank, J. R. Sobus, X. M. Howey, J. Schmid,

T. Catron, J. McCord, E. Hines, M. Strynar and T. Tal,

Environ. Health Perspect., 2020, 128, 47005.

12 L. Zhu, Y. Jia, Y. Zhu, J. Wang and Y. Zhang, China Pat.,

CN113336643A, 2021.

13 H. Shimura, Y. Nishiguchi, Y. Adachi, T. Tokuyama and

K. Kuraoka, International Pat., WO2019168137A1, 2019.

14 Y. Yoshizaki, T. Hamada, M. Ogata, H. Shimura and

T. Ogawa, Japan Pat., JP20201719367A, 2020.

15 T. Yoshizaki, T. Hamada, M. Ogata, H. Shimura and

T. Ogawa, China Pat., CN113226527A, 2021.

16 E. A. Reyes, A. M. Beuterbaugh and A. L. Smith, US Pat.,

US9051510B1, 2015.

17 R. L. Watkins, H. Baghdadi, C. Edwards and Y. Chang, US

Pat., CN105143324A, 2015.

18 H. Tani, T. Kamidate and H. Watanabe, J. Chromatogr. A,

1997, 780, 229–241.

19 C. D. Stalikas, TrAC, Trends Anal. Chem., 2002, 21, 343–355.

20 R. R. Srivastava and S. Ilyas, in Strontium Contamination in

the Environment, ed. P. Pathak and D. K. Gupta, Springer

International Publishing, Cham, 2020, DOI: 10.1007/978-3030-15314-4_3, pp. 43–63.

21 C. Xu, J. Wang and J. Chen, Solvent Extr. Ion Exch., 2012, 30,

623–650.

22 A. Kumar, P. K. Mohapatra, P. N. Pathak and

V. K. Manchanda, Talanta, 1997, 45, 387–395.

23 E. P. Horwitz, M. L. Dietz and D. E. Fisher, Solvent Extr. Ion

Exch., 2007, 8, 557–572.

24 W. Jianchen and S. Chongli, Radiochim. Acta, 2001, 89, 151–

154.

25 R. S. Herbst, J. D. Law and T. A. Todd, Sep. Sci. Technol., 2002,

37, 1321–1351.

26 K. K. Gupta, P. V. Achuthan, A. Ramanujam and

J. N. Mathur, Solvent Extr. Ion Exch., 2003, 21, 53–71.

27 P. K. Mohapatra, D. S. Lakshmi and V. K. Manchanda,

Desalination, 2006, 198, 166–172.

28 W. J. McDowell, B. A. Moyer, G. N. Case and F. I. Case, Solvent

Extr. Ion Exch., 1986, 4, 217–236.

© 2022 The Author(s). Published by the Royal Society of Chemistry

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Open Access Article. Published on 21 September 2022. Downloaded on 2/10/2023 5:45:54 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Paper

29 W. J. McDowell, G. N. Case and D. W. Aldrup, Sep. Sci.

Technol., 1983, 18, 1483–1507.

30 P. Vaˇ

nura, V. Jedin´

akov´

a-Kˇr´ıˇzov´

a and Z. Valentov´

a, J.

Radioanal. Nucl. Chem., 1996, 208, 283–294.

31 P. Vaˇ

nura, J. Radioanal. Nucl. Chem., 1998, 228, 43–46.

32 P. Nov´y, P. Vaˇ

nura and E. Makrl´ık, J. Radioanal. Nucl. Chem.,

1998, 231, 65–68.

33 A. H. Bond, R. Chiarizia, V. J. Huber, M. L. Dietz,

A. W. Herlinger and B. P. Hay, Anal. Chem., 1999, 71, 2757–

2765.

34 R. Chiarizia, V. Urban, P. Thiyagarajan, A. H. Bond and

M. L. Dietz, Solvent Extr. Ion Exch., 2000, 18, 451–478.

35 D. R. McAlister, R. Chiarizia, M. L. Dietz, A. W. Herlinger and

P. R. Zalupski, Solvent Extr. Ion Exch., 2002, 20, 447–469.

36 R. Chiarizia, D. R. McAlister and A. W. Herlinger, Solvent

Extr. Ion Exch., 2003, 21, 171–197.

37 M. P. Jensen, J. A. Dzielawa, P. Rickert and M. L. Dietz, J. Am.

Chem. Soc., 2002, 124, 10664–10665.

38 M. L. Dietz and M. P. Jensen, Talanta, 2004, 62, 109–113.

39 A. Kumar, P. K. Mohapatra, P. N. Pathak and

V. K. Manchanda, Radiochim. Acta, 2000, 88, 885–888.

40 E. Goldman and R. Jacobs, J. - Am. Water Works Assoc., 1961,

53, 187–191.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

41 EQUATRAN:

All-purpose

equation

solver,https://

www.prefeed.com/modeling/index.html, accessed Aug. 29,

2022, 2022.

42 ATHENA: XAS data processing, https://bruceravel.github.io/

demeter/documents/Athena/index.html, accessed Feb. 12,

2022, 2022.

43 M. L. Dietz, A. H. Bond, M. Clapper and J. W. Finch,

Radiochim. Acta, 1999, 85, 119–130.

44 M. Lakkis, J. P. Brunette, M. J. F. Leroy and J. Alstad, Solvent

Extr. Ion Exch., 1986, 4, 287–299.

45 W. Davis and H. J. De Bruin, J. Inorg. Nucl. Chem., 1964, 26,

1069–1083.

46 R. M. Smith and A. E. Martell, Critical stability constants,

Springer, Boston, MA, 1976.

47 G. R. Choppin and A. Morgenstern, Solvent Extr. Ion Exch.,

2000, 18, 1029–1049.

48 C. Xu, G. Ye, S. Wang, W. Duan, J. Wang and J. Chen, Solvent

Extr. Ion Exch., 2013, 31, 731–742.

49 T. Sun, Z. Zheng, J. Chen, J. Wang and C. Xu, Sep. Sci.

Technol., 2018, 53, 503–512.

50 Substance Detail (CAS Registry Number 55621-18-6),https://

scinder-n.cas.org, accessed Jan. 12, 2022.

RSC Adv., 2022, 12, 26922–26933 | 26933

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る