リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ECG Signal Reconstruction Using FMCW Radar and a Convolutional Neural Network for Contactless Vital-Sign Sensing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ECG Signal Reconstruction Using FMCW Radar and a Convolutional Neural Network for Contactless Vital-Sign Sensing

Daiki TODA Ren ANZAI Koichi ICHIGE 10313470 Ryo SAITO Daichi UEKI 横浜国立大学

2023.01.01

概要

A method of radar-based contactless vital-sign sensing and electrocardiogram (ECG) signal reconstruction using deep learning is proposed. A radar system is an effective tool for contactless vital-sign sensing because it can measure a small displacement of the body surface without contact. However, most of the conventional methods have limited evaluation indices and measurement conditions. A method of measuring body-surface-displacement signals by using frequency-modulated continuous-wave (FMCW) radar and reconstructing ECG signals using a convolutional neural network (CNN) is proposed. This study conducted two experiments. First, we trained a model using the data obtained from six subjects breathing in a seated condition. Second, we added sine wave noise to the data and trained the model again. The proposed model is evaluated with a correlation coefficient between the reconstructed and actual ECG signal. The results of first experiment show that their ECG signals are successfully reconstructed by using the proposed method. That of second experiment show that the proposed method can reconstruct signal waveforms even in an environment with low signal-to-noise ratio (SNR).

参考文献

[1] K. Yamamoto, K. Toyoda, and T. Ohtsuki, “Spectrogram-based Non-contact RRI estimation by accurate peak detection algorithm,” IEEE Access, vol.6, pp.60369–60379, Oct. 2018. DOI: 10.1109/ ACCESS.2018.2875737

[2] K. Fujiwara, E. Abe, K. Kamata, C. Nakayama, Y. Suzuki, T. Yamakawa, T. Hiraoka, M. Kano, Y. Sumi, F. Masuda, M. Mat- suo, and H. Kadotani, “Heart rate variability-based driver drowsiness detection and its validation with EEG,” IEEE Trans. Biomed. Eng., vol.66, no.6, pp.1769–1778, Nov. 2018. DOI: 10.1109/ TBME.2018.2879346

[3] X. Tian, Q. Zhu, Y. Li, and M. Wu, “Cross-domain joint dictionary learning for ECG reconstruction from PPG,” Proc. IEEE International Conf. Acoustics, Speech and Signal Processing, pp.936–940, May 2020. DOI: 10.1109/ICASSP40776.2020.9054242

[4] V.L. Petrović, M.M. Janković, A.V. Lupšić, V.R. Mihajlović and J.S. Popović-Božović, “High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar,” IEEE Access, vol.7, pp.74721–74733, June 2019. DOI: 10.1109/ ACCESS.2019.2921240

[5] T. Sakamoto, S. Mitani, and T. Sato, “Noncontact monitoring of heartbeat and movements during sleep using a pair of millimeter-wave ultra-wideband radar systems,” IEICE Trans. Commun., vol.E104-B, no.4, pp.463–471, April 2021. DOI: 10.1587/ transcom.2020EBP3078

[6] S. Wu, T. Sakamoto, K. Oishi, T. Sato, K. Inoue, T. Fukuda, K. Mizutani, and H. Sakai, “Person-specific heart rate estimation with ultra-wideband radar using convolutional neural networks,” IEEE Access, vol.7, pp.168484–168494, Nov. 2019. DOI: 10.1109/ ACCESS.2019.2954294

[7] K. Yamamoto and T. Ohtsuki, “Non-contact heartbeat detection by heartbeat signal reconstruction based on spectrogram analysis with convolutional LSTM,” IEEE Access, vol.8, pp.123603–123613, June 2020. DOI: 10.1109/ACCESS.2020.3006107

[8] W. Xia, Y. Li, and S. Dong, “Radar-based high-accuracy cardiac activity sensing,” IEEE Trans. Instrum. Meas., vol.70, pp.1–13, Jan. 2021. DOI: 10.1109/TIM.2021.3050827

[9] K. Yamamoto, R. Hiromatsu, and T. Ohtsuki, “ECG signal reconstruction via Doppler sensor by hybrid deep learning model with CNN and LSTM,” IEEE Access, vol.8, pp.130551–130560, July 2020. DOI: 10.1109/ACCESS.2020.3009266

[10] M. van Gastel, S. Stuijk, S. Overeem, J.P. van Dijk, M.M. van Gilst, and G. de Haan, “Camera-based vital signs monitoring during sleep — A proof of concept study,” IEEE J. Biomed. Health Inform., vol.25, pp.1409–1418, Dec. 2020. DOI: 10.1109/ JBHI.2020.3045859

[11] M.F. Ahmed, M.O. Ali, M.H. Rahman, and Y.M. Jang, “Real-time health monitoring system design based on optical camera communication,” Proc. International Conf. on Information Networking, pp.870–873, Jan. 2021. DOI: 10.1109/ICOIN50884.2021.9334018

[12] G. Zhang, S. Zhang, Y. Dai, and B. Shi, “Using rear smartphone cameras as sensors for measuring heart rate variability,” IEEE Access, vol.9, pp.20460–20468, Jan. 2021. DOI: 10.1109/ ACCESS.2021.3054065

[13] S. Ji, H. Wen, J. Wu, Z. Zhang, and K. Zhao, “Systematic heartbeat monitoring using a FMCW mm-Wave radar,” Proc. IEEE International Conf. Consumer Electronics and Computer Engineering, pp.714–718, Jan. 2021. DOI: 10.1109/ICCECE51280.2021.9342280

[14] I. Nejadgholi, S. Rajan, and M. Bolic, “Time-frequency based contactless estimation of vital signs of human while walking using PMCW radar,” Proc. IEEE International Conf. e-Health Networking, Applications and Services, pp.1–6, Sept. 2016. DOI: 10.1109/ HEALTHCOM.2016.7749445

[15] X. Tian, Q. Zhu, Y. Li, and M. Wu, “ECG reconstruction via PPG: A pilot study,” Proc. IEEE EMBS International Conf. Biomedical Health Informatics, pp.1–4, Sept. 2019. DOI: 10.1109/ BHI.2019.8834612

[16] H.Y. Chiu, H.H. Shuai, and P.C.P. Chao, “Reconstructing QRS complex from PPG by transformed attentional neural networks,” IEEE Sensors J., vol.20, no.20, pp.12374–12383, June 2020. DOI: 10.1109/JSEN.2020.3000344

[17] M. Shibao and A. Kajiwara, “Heart-rate monitoring of moving persons using 79 GHz ultra-wideband radar sensor,” IEICE Commun. Express, vol.9, no.5, pp.125–130, Feb. 2020. DOI: 10.1587/ comex.2020XBL0005

[18] S.M.M. Islam, L.C. Lubecke, C. Grado, and V.M. Lubecke, “An adaptive filter technique for platform motion compensation in unmanned aerial vehicle based remote life sensing radar,” Proc. European Microwave Conf., pp.937–940, Jan. 2021. DOI: 10.23919/ EuMC48046.2021.9338011

[19] K. Shi, S. Schellenberger, F. Michler, T. Steigleder, A. Malessa, F. Lurz, C. Ostgathe, R. Weigel, and A. Koelpin, “Automatic signal quality index determination of radar-recorded heart sound signals using ensemble classification,” IEEE Trans. Biomed. Eng., vol.67, no.3, pp.773–785, June 2019. DOI: 10.1109/TBME.2019.2921071

[20] M. Elgendi, M. Jonkman, and F. DeBoer, “Frequency bands effects on QRS detection,” Proc. 3rd International Conf. Bio-inspired Systems and Signal Processing, pp.428–431, Jan. 2010. ISBN: 978- 989674018-4

[21] Y. Li, Z. Xia, and Y. Zhang, “Standalone systolic profile detection of non-contact SCG signal with LSTM network,” IEEE Sensors J., vol.20, pp.3123–3131, Dec. 2019. DOI: 10.1109/ JSEN.2019.2957382

[22] O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol.4, no.11, e00938, Nov. 2018. DOI: 10.1016/j.heliyon.2018.e00938

[23] D. Toda, R. Anzai, K. Ichige, R. Saito, and D. Ueki, “ECG signal reconstruction using FMCW radar and convolutional neural netowrk,” IEICE Society Conference, no.B-1-84, Sept. 2021 (in Japanese).

[24] D. Toda, R. Anzai, K. Ichige, R. Saito, and D. Ueki, “ECG signal reconstruction using FMCW radar and convolutional neural netowrk,” Proc. International Symposium on Communications and Information Technologies, pp.176–181, Oct. 2021. DOI:10.1109/ ISCIT52804.2021.9590627

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る