リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photoevaporation of Protoplanetary Disks and Molecular Cloud Cores in Star-Forming Regions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photoevaporation of Protoplanetary Disks and Molecular Cloud Cores in Star-Forming Regions

仲谷, 崚平 東京大学 DOI:10.15083/0002001862

2021.10.04

概要

銀河中の分子は、分子雲と呼ばれるガスの集合体を構成する。分子雲は恒星系の母天体であリ、星形成はその中心部の重力収縮によリ始まる。収縮中心では原始星とその周囲を取リ囲む円盤が形成する。この円盤はガスと固体微粒子(ダスト)で構成され、これらを材料に惑星が円盤中で形成される。故に、この円盤は原始惑星系円盤と呼称される。円盤は中心星と共進化をし、やがて消失する。結果として、今日の太陽系のような恒星系が残される。

近年の観測によリ、惑星は近傍の星々にも多く存在することが明らかとなった。同時に、それらは太陽系惑星とは異なる性質を多く持ち、太陽系が標準的では必ずしもないことを示した。これら多様性の原因は未解明であるが、形成過程に影響を与えうる環境的な違いが要因のひとつとして挙げられている。実際、木星のような巨大ガス惑星の存在率は中心星に含有される重元素の量(金属量)とともに增加する傾向にあることが観測的に知られる。また、近年の観測によリ、銀河外縁部の低金属量環境下では、原始惑星系円盤の消失時間が短いことが指摘されている。これらの傾向を生む原因もまた未解明であるが、環境によって恒星系の形成・進化過程が異なること明示している。これらを明らかにすることは、究極的には、恒星系進化の統一的描像の理解に繫がるため重要である。

本博士論文の主眼は、様々な金属量環境下における恒星系形成およびその進化にある。金属量は星形成の時代・場所を特徴づける重要な物理量のひとつである。例えば、銀河系内では中心部から外縁部にかけて金属量が減少することが知られる。さらに重要なことには、重元素の量は原始状態から銀河が進化するにつれて全体として增加する。つまリ、金属量の多様性を考慮することは、銀河系の始まリからの恒星系進化を明らかにするために不可欠である。また、これは宇宙を構成する重要要素である銀河_体の進化過程を明らかにするために不可欠である。

これを目的とし、本博士論文では、様々な金属量環境下における原始惑星系円盤および分子雲の消失過程を明らかにする。原始惑星系円盤は中心星からの紫外線やX線によリ表面が炙られ、蒸発を起こす。これにより円盤は数百万年で消失すると見積もられ、観測的に得得られる円盤寿命と整合する。円盤寿命は、巨大ガス惑星の形成時間を制限し、また原始惑星系の形態決定に関わる量である。本論文では、原始惑星系円盤光蒸発の金属量依存性を明らかにし、円盤寿命の金属量依存性を導く。同様に、大質量星近傍の星形成領域では、その強い輻射によリ分子雲表面で光蒸発が駆動される。これは大質量星周リの星形成に負の影響を与える。逆に、大質量星の強い輻射は分子雲内に衝撃波を駆動し、分子雲の中心密度を上昇させ、大質量星周リの星形成に正の影響も与えることができる。これらの物理過程は正負いずれにしても大質量星周リの星形成効率に関わるため重要である。特に、高赤方偏移銀河では、大質量星が多く形成されると期待されるため、これらの物理過程がもたらす星形成効率や星形成率への影響は大きい。本論文では、近傍大質量星に照らされる様々な金属量を持った分子雲の光蒸発過程を追い、大質量星がもたらす周囲の星形成への影響を議論する。

本論文ではまず、中心星からの紫外線輻射によリ光蒸発を起こしている原始惑星系円盤の輻射流体シミュレーションを遂行する。照射紫外線成分として遠紫外線(6eVミ/ιν< 13.6 eV)と極超紫外線(hv >13.6 eV)を考慮し、非平衡化学反応計算を自己無撞着に行う。ダスト温度は、中心星からの照射光およびダストの熱放射の輸送を整合的に解き、決定する。円盤金属量は10-4 zo < Z く10 ζΘの範囲を考える。シミュレーションの結果、遠紫外線による光電加熱によリ、化学的に中性な高密度光蒸発流が駆動されることが明らかとな
った。質量損失率は光電加熱およびダストーガス衝突冷却の相対的強度によリ決まる。太陽金属量円盤においては、質量損失率が〜1 0- 8 Mo yr- 1 と見積もられる。10 - 1 ZQ < Z く 10ζΘの範囲では、低金属量ほど、遠紫外線吸収源であるダストが少ないため、円盤の不透明度が下がリ、遠紫タト線が高密度領域を加熱する。結果、低金属量ほど高密度流が駆動され光蒸発率が高くなる。10-2 ΖΘ < Ζ く10-1ΖΘの範囲では、遠紫外線による光電加熱がダストーガス衝突冷却に対して相対的に弱くなるのに伴い、中性流の駆動が抑えられる。結果的に、光蒸発率は低金属量ほど小さくなる。さらに低い金属量範囲10-4ΖΘ <Ζ <10-2ΖΘでは、中性流の寄与がほとんどなく、蒸発率は極超紫外線駆動の電離流の寄与によリ決まる。極超紫外線の吸収源は水素原子であるため、その加熱率は金属量に陽に依存しない。蒸発率はこの金属量範囲においてほぼ一定となリ〜10-9 Mo yr-1である。これらの蒸発率を用い導いた円盤寿命は、観測と整合的である。よって、観測的円盤寿命の金属量依存性は遠紫外線駆動の光蒸発によリ引き起こされ得ると結論付けられる。

次では、上のシミュレーションにX線(0.1 keV < /ιν <10 keV)の効果を取り入れ、X線が光蒸発および円盤寿命に与える影響を明らかにする。X線が光蒸発に与える効果についてはこれまで盛んな議論が行われてきたが、未だ見解の一致が得られていない。本研究では、X線のスペクトルエネルギー分布を考慮した輻射流体シミュレーションを行うことによリ、X線の光蒸発への影響について初めて直接的な検証を行う。結果として、x線_体の加熱は遠紫外線ほど効率的に光蒸発駆動に寄与しないが、X線による電離は遠紫外線による光電加熱を強める効果があることが明らかとなった。X線の効果を考慮した場合も、光蒸発の金属量依存性は光電加熱とダストーガス衝突冷却の相対的強度によリ決まる。したがって、光蒸発率の金属量に対する振る舞いは上の紫外線光蒸発の場合と同様になる。しかし、X線電離によリ光電加熱が強められる効果で10-2・5 ZQ
最後に、本論文では多様な金属量環境中の星形成領域における低質量分子雲の光蒸発過程を追う。ここでは、近傍大質量星からの紫外線に曝されている、10_3ΖΘ≲Ζ ≲1ΖΘの金属量を持つ分子雲コアを考え、自己無撞着な3次元輻射流体シミュレーションを遂行しその進化過程を追う。シミュレーションでは、極超紫外線照射によリ、Ζ ≳10-1ΖΘの分子雲コア内部に衝撃波が誘起される。この衝撃波およびコア周囲の高温ガスによリ、コアは圧縮を受け、中心領域の密度が上がる。最終的に圧縮を受けたコアは彗星形の構造を形成する。これらのコアはおよそ10万年程度の寿命を持つ。一方で、低金属量コア(Ζ ≲10-2 ζο)は主要冷却源である金属が少ないため、衝撃波後面が高温に保たれる。寿命は比較的短く、およそ1万年程度である。自由落下時間は、高金属量コアでは圧縮により十分短くなるため、消失前にコア中心部で重力収縮が始まり得る。また、光解離領域中での光蒸発過程を追うため、遠紫外線のみを考慮したシミュレーションを遂行した。十分に高金属量の場合(Ζ ≳ 1ΖΘ).光電加熱によリコアが圧縮され、彗星形構造が形成される。しかし、低金属量の場合(Ζ ≲10-0・5 ζΘ)はコア全体が加熱され、コアは膨張する。自由落下時間は長くなリ、遠紫外線は星形成を阻害する方向に働く。結局、大質量星周リの金属が豊富(Ζ >ΙΟ-1ζΘ)な星形成領域においては、星形成が極超紫外線の効果によリ促進され得る。金属量がよリ高い場合(Ζ ≳ 1Ζθ)は、光解離領域でも遠紫外線の効果で星形成が促され得る。他では、星形成は大質量星による紫外線の効果で強く抑制される、または遲らされる。低金属量環境 (Z ≲10~2 Zo)においては、大質量星による紫外線は一般に星形成を阻害する方向に働く。

本論文における研究の結果、太陽系近傍の星形成領域では、大質量星近傍で星形成が促進され、結果的に形成される恒星系内では、高金属量ほど巨大ガス惑星形成効率が高くなると考えられる。一方、原始銀河のような低金属量環境(Z ≲10-2 zo)では、大質量星周リで星形成が強く抑制される。仮に原始惑星系円盤が形成された場合は、寿命が低金属量ほど長く、巨大ガス惑星は質量成長や力学的進化をするための時間を長く持つ。本論文で導いた低金属量円盤の光蒸発流プロファイルや円盤寿命は進化後期段階にある円盤に応用可能である。そのような円盤では、ダストが成長しながら円盤中間面に沈殿し、局所的に低金属量環境が実現される。次世代望遠鏡による将来観測によリ直接的な観測とモデルの比較が可能になると期待される。本論文では、主に低質量分子雲または原始惑星系円盤の消失過程を追ったが、実際これらは質量分布を持って星形成領域に存在する。また、多かれ少なかれ輻射源の光度は系の質量や金属量に依存する。今後、これらの効果を考慮した研究も遂行する。研究結果は、本論文の結果も含め、惑星探索ミッションや銀河進化の理論的研究などの他分野にも広く応用可能である。

参考文献

Adams, F. C., Hollenbach, D., Laughlin, G. and Gorti, U. (2004). Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates, ApJ 611, pp. 360–379, doi: 10.1086/421989.

Alexander, R., Pascucci, I., Andrews, S., Armitage, P. and Cieza, L. (2014). The Disper- sal of Protoplanetary Disks, Protostars and Planets VI , pp. 475–496doi:10.2458/azu uapress 9780816531240-ch021.

Alexander, R. D., Clarke, C. J. and Pringle, J. E. (2004). The effects of X-ray photoionization and heating on the structure of circumstellar discs, MNRAS 354, pp. 71–80, doi:10.1111/j.1365-2966. 2004.08161.x.

Alexander, R. D., Clarke, C. J. and Pringle, J. E. (2006). Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties, MNRAS 369, pp. 229–239, doi:10.1111/j. 1365-2966.2006.10294.x.

Andr´e, P., Men’shchikov, A., Bontemps, S., K¨onyves, V., Motte, F., Schneider, N., Didelon, P., Minier, V., Saraceno, P., Ward Thompson, D., di Francesco, J., White, G., Molinari, S., Testi, L., Abergel, A., Griffin, M., Henning, T., Royer, P., Mer´ın, B., Vavrek, R., Attard, M., Arzoumanian, D., Wilson, C. D., Ade, P., Aussel, H., Baluteau, J.-P., Benedettini, M., Bernard, J.-P., Blom- maert, J. A. D. L., Cambr´esy, L., Cox, P., di Giorgio, A., Hargrave, P., Hennemann, M., Huang, M., Kirk, J., Krause, O., Launhardt, R., Leeks, S., Le Pennec, J., Li, J. Z., Martin, P. G., Maury, A., Olofsson, G., Omont, A., Peretto, N., Pezzuto, S., Prusti, T., Roussel, H., Russeil, D., Sauvage, M., Sibthorpe, B., Sicilia-Aguilar, A., Spinoglio, L., Waelkens, C., Woodcraft, A. and Zavagno, A. (2010). From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey, A&A 518, L102, doi:10.1051/0004-6361/201014666.

Andrews, S. M. and Williams, J. P. (2005). Circumstellar Dust Disks in Taurus-Auriga: The Sub- millimeter Perspective, ApJ 631, pp. 1134–1160, doi:10.1086/432712.

Anninos, P., Zhang, Y., Abel, T. and Norman, M. L. (1997). Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling, Nature 2, pp. 209–224, doi: 10.1016/S1384-1076(97)00009-2.

Armitage, P. J. (2011). Dynamics of Protoplanetary Disks, ARA&A 49, pp. 195–236, doi:10.1146/ annurev-astro-081710-102521.

Bai, X.-N. (2013). Wind-driven Accretion in Protoplanetary Disks. II. Radial Dependence and Global Picture, ApJ 772, 96, doi:10.1088/0004-637X/772/2/96.

Bai, X.-N. (2016). Towards a Global Evolutionary Model of Protoplanetary Disks, ApJ 821, 80, doi:10.3847/0004-637X/821/2/80.

Bai, X.-N. (2017). Global Simulations of the Inner Regions of Protoplanetary Disks with Compre- hensive Disk Microphysics, ApJ 845, 75, doi:10.3847/1538-4357/aa7dda.

Bai, X.-N. and Stone, J. M. (2013). Wind-driven Accretion in Protoplanetary Disks. I. Suppression of the Magnetorotational Instability and Launching of the Magnetocentrifugal Wind, ApJ 769, 76, doi:10.1088/0004-637X/769/1/76.

Bai, X.-N., Ye, J., Goodman, J. and Yuan, F. (2016). Magneto-thermal Disk Winds from Proto- planetary Disks, ApJ 818, 152, doi:10.3847/0004-637X/818/2/152.

Bakes, E. L. O. and Tielens, A. G. G. M. (1994). The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons, ApJ 427, pp. 822–838, doi:10.1086/ 174188.

Balbus, S. A. and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution, ApJ 376, pp. 214–233, doi:10.1086/170270.

Bally, J., Langer, W. D., Stark, A. A. and Wilson, R. W. (1987). Filamentary structure in the Orion molecular cloud, ApJ 312, pp. L45–L49, doi:10.1086/184817.

Barb´a, R. H., Rubio, M., Roth, M. R. and Garc´ıa, J. (2003). Active Star Formation in the N11B Nebula in the Large Magellanic Cloud: A Sequential Star Formation Scenario Confirmed, AJ 125, pp. 1940–1957, doi:10.1086/368141.

Barrado y Navascu´es, D. and Mart´ın, E. L. (2003). An Empirical Criterion to Classify T Tauri Stars and Substellar Analogs Using Low-Resolution Optical Spectroscopy, AJ 126, pp. 2997–3006, doi: 10.1086/379673.

Bertoldi, F. (1989). The photoevaporation of interstellar clouds. I - Radiation-driven implosion, ApJ 346, pp. 735–755, doi:10.1086/168055.

Bertoldi, F. and McKee, C. F. (1990). The photoevaporation of interstellar clouds. II - Equilibrium cometary clouds, ApJ 354, pp. 529–548, doi:10.1086/168713.

Bertoldi, F. and McKee, C. F. (1992). Pressure-confined clumps in magnetized molecular clouds, ApJ 395, pp. 140–157, doi:10.1086/171638.

Bertout, C., Basri, G. and Bouvier, J. (1988). Accretion disks around T Tauri stars, ApJ 330, pp. 350–373, doi:10.1086/166476.

Blitz, L. (1993). Giant molecular clouds, in E. H. Levy and J. I. Lunine. eds., Protostars and Planets III, Tucson, AZ: Univ. of Arizona Press, pp. 125–161.

Blitz, L. and Shu, F. H. (1980). The origin and lifetime of giant molecular cloud complexes, ApJ 238, pp. 148–157, doi:10.1086/157968.

Bok, B. J. and Reilly, E. F. (1947). Small Dark Nebulae. ApJ 105, p. 255, doi:10.1086/144901.

Bonnor, W. B. (1956). Boyle’s Law and gravitational instability, MNRAS 116, p. 351, doi:10.1093/ mnras/116.3.351.

Cant´o, J., Raga, A., Steffen, W. and Shapiro, P. R. (1998). Shadows behind Neutral Clumps in Photoionized Regions, ApJ 502, pp. 695–707, doi:10.1086/305946.

Castelli, F. and Cacciari, C. (2001). Stellar parameters for Pop II A-type stars from IUE spectra and new-ODF ATLAS9 model atmospheres, A&A 380, pp. 630–644, doi:10.1051/0004-6361:20011445.

Castelli, F. and Kurucz, R. L. (2004). New Grids of ATLAS9 Model Atmospheres, arXiv Astrophysics e-prints .

Chamberlain, J. W. and Aller, L. H. (1951). The Atmospheres of A-Type Subdwarfs and 95 Leonis. ApJ 114, p. 52, doi:10.1086/145451.

Christlieb, N. (2003). Finding the Most Metal-poor Stars of the Galactic Halo with the Ham- burg/ESO Objective-prism Survey (With 6 Figures), in R. E. Schielicke. ed., Reviews in Mod- ern Astronomy, Reviews in Modern Astronomy, Vol. 16, New York: Wiley, p. 191, doi: 10.1002/9783527617647.ch8.

Clarke, C. J., Gendrin, A. and Sotomayor, M. (2001). The dispersal of circumstellar discs: the role of the ultraviolet switch, MNRAS 328, pp. 485–491, doi:10.1046/j.1365-8711.2001.04891.x.

Contursi, A., Lequeux, J., Cesarsky, D., Boulanger, F., Rubio, M., Hanus, M., Sauvage, M., Tran, D., Bosma, A., Madden, S. and Vigroux, L. (2000). Mid-infrared imaging and spectrophotometry of N 66 in the SMC with ISOCAM, A&A 362, pp. 310–324.

Currie, T., Lada, C. J., Plavchan, P., Robitaille, T. P., Irwin, J. and Kenyon, S. J. (2009). The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362, ApJ 698, pp. 1–27, doi:10.1088/0004-637X/698/1/1.

Decataldo, D., Ferrara, A., Pallottini, A., Gallerani, S. and Vallini, L. (2017). Molecular clumps photoevaporation in ionized regions, MNRAS 471, pp. 4476–4487, doi:10.1093/mnras/stx1879.

Deharveng, L., Lefloch, B., Kurtz, S., Nadeau, D., Pomar`es, M., Caplan, J. and Zavagno, A. (2008). Triggered massive-star formation on the borders of Galactic H II regions. IV. Star formation at the periphery of Sh2-212, A&A 482, pp. 585–596, doi:10.1051/0004-6361:20079233.

Deharveng, L., Zavagno, A. and Caplan, J. (2005). Triggered massive-star formation on the borders of Galactic H II regions. I. A search for “collect and collapse” candidates, A&A 433, pp. 565–577, doi:10.1051/0004-6361:20041946.

Dent, W. R. F., Thi, W. F., Kamp, I., Williams, J. P., Menard, F., Andrews, S., Ardila, D., Aresu, G., Augereau, J.-C., Barrado y Navascues, D., Brittain, S., Carmona, A., Ciardi, D., Danchi, W., Donaldson, J., Duchene, G., Eiroa, C., Fedele, D., Grady, C., de Gregorio-Molsalvo, I., Howard, C., Hu´elamo, N., Krivov, A., Lebreton, J., Liseau, R., Martin-Zaidi, C., Mathews, G., Meeus, G., Mendigut´ıa, I., Montesinos, B., Morales-Calderon, M., Mora, A., Nomura, H., Pantin, E., Pascucci, I., Phillips, N., Pinte, C., Podio, L., Ramsay, S. K., Riaz, B., Riviere- Marichalar, P., Roberge, A., Sandell, G., Solano, E., Tilling, I., Torrelles, J. M., Vandenbusche, B., Vicente, S., White, G. J. and Woitke, P. (2013). GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics, PASP 125, pp. 477–505, doi: 10.1086/670826.

Draine, B. T. (2011). Physics of the Interstellar and Intergalactic Medium, Princeton, NJ: Princeton Univ. Press.

Draine, B. T. and Bertoldi, F. (1996). Structure of Stationary Photodissociation Fronts, ApJ 468, p. 269, doi:10.1086/177689.

Draine, B. T. and Lee, H. M. (1984). Optical properties of interstellar graphite and silicate grains, ApJ 285, pp. 89–108, doi:10.1086/162480.

Duvert, G., Cernicharo, J., Bachiller, R. and Gomez-Gonzalez, J. (1990). Star formation in a small globule in IC 1396, A&A 233, pp. 190–196.

Ebert, R. (1955). U¨ ber die Verdichtung von H I-Gebieten. Mit 5 Textabbildungen, ZAp 37, p. 217.

Elmegreen, B. G. (1979). On the disruption of a protoplanetary disk nebula by a T Tauri like solar wind, A&A 80, p. 77.

Elmegreen, B. G. and Lada, C. J. (1977). Sequential formation of subgroups in OB associations, ApJ 214, pp. 725–741, doi:10.1086/155302.

Ercolano, B. and Clarke, C. J. (2010). Metallicity, planet formation and disc lifetimes, MNRAS 402, pp. 2735–2743, doi:10.1111/j.1365-2966.2009.16094.x.

Ercolano, B., Clarke, C. J. and Drake, J. J. (2009). X-Ray Irradiated Protoplanetary Disk At- mospheres. II. Predictions from Models in Hydrostatic Equilibrium, ApJ 699, pp. 1639–1649, doi:10.1088/0004-637X/699/2/1639.

Ercolano, B., Clarke, C. J. and Hall, A. C. (2011). The clearing of discs around late-type T Tauri stars: constraints from the infrared two-colour plane, MNRAS 410, pp. 671–678, doi:10.1111/j. 1365-2966.2010.17473.x.

Ercolano, B., Drake, J. J., Raymond, J. C. and Clarke, C. C. (2008). X-Ray-Irradiated Protoplan- etary Disk Atmospheres. I. Predicted Emission-Line Spectrum and Photoevaporation, ApJ 688, 398-407, doi:10.1086/590490.

Ercolano, B. and Pascucci, I. (2017). The dispersal of planet-forming discs: theory confronts obser- vations, Royal Society Open Science 4, 170114, doi:10.1098/rsos.170114.

Espaillat, C., Muzerolle, J., Najita, J., Andrews, S., Zhu, Z., Calvet, N., Kraus, S., Hashimoto, J., Kraus, A. and D’Alessio, P. (2014). An Observational Perspective of Transitional Disks, Protostars and Planets VI , pp. 497–520doi:10.2458/azu uapress 9780816531240-ch022.

Esquivel, A. and Raga, A. C. (2007). Radiation-driven collapse of autogravitating neutral clumps, MNRAS 377, pp. 383–390, doi:10.1111/j.1365-2966.2007.11609.x.

Evans, N. J., II (1999). Physical Conditions in Regions of Star Formation, ARA&A 37, pp. 311–362, doi:10.1146/annurev.astro.37.1.311.

Facchini, S., Clarke, C. J. and Bisbas, T. G. (2016). External photoevaporation of protoplanetary discs in sparse stellar groups: the impact of dust growth, MNRAS 457, pp. 3593–3610, doi: 10.1093/mnras/stw240.

Fedele, D., van den Ancker, M. E., Henning, T., Jayawardhana, R. and Oliveira, J. M. (2010). Timescale of mass accretion in pre-main-sequence stars, A&A 510, A72, doi:10.1051/0004-6361/ 200912810.

Flaherty, K. M. and Muzerolle, J. (2008). Evidence for Early Circumstellar Disk Evolution in NGC 2068/71, AJ 135, pp. 966–983, doi:10.1088/0004-6256/135/3/966.

Font, A. S., McCarthy, I. G., Johnstone, D. and Ballantyne, D. R. (2004). Photoevaporation of Circumstellar Disks around Young Stars, ApJ 607, pp. 890–903, doi:10.1086/383518.

Gagn´e, M., Fehon, G., Savoy, M. R., Cohen, D. H., Townsley, L. K., Broos, P. S., Povich, M. S., Corcoran, M. F., Walborn, N. R., Remage Evans, N., Moffat, A. F. J., Naz´e, Y. and Oskinova, L. M. (2011). Carina OB Stars: X-ray Signatures of Wind Shocks and Magnetic Fields, ApJS 194, 5, doi:10.1088/0067-0049/194/1/5.

Galli, D. and Palla, F. (1998). The chemistry of the early Universe, A&A 335, pp. 403–420.

Gammie, C. F. (1996). Layered Accretion in T Tauri Disks, ApJ 457, p. 355, doi:10.1086/176735. Geers, V. C., van Dishoeck, E. F., Visser, R., Pontoppidan, K. M., Augereau, J.-C., Habart, E. and Lagrange, A. M. (2007). Spatially extended polycyclic aromatic hydrocarbons in circumstel- lar disks around T Tauri and Herbig Ae stars, A&A 476, pp. 279–289, doi:10.1051/0004-6361: 20078466.

Gillon, M., Jehin, E., Lederer, S. M., Delrez, L., de Wit, J., Burdanov, A., Van Grootel, V., Burgasser, A. J., Triaud, A. H. M. J., Opitom, C., Demory, B.-O., Sahu, D. K., Bardalez Gagliuffi, D., Magain, P. and Queloz, D. (2016). Temperate Earth-sized planets transiting a nearby ultracool dwarf star, Nature 533, pp. 221–224, doi:10.1038/nature17448.

Gonzalez, G. (1997). The stellar metallicity-giant planet connection, MNRAS 285, pp. 403–412, doi:10.1093/mnras/285.2.403.

Gonz´alez, R. F., Raga, A. C. and Steffen, W. (2005). Numerical Simulations of the Fragmentation of Photoevaporating Nonuniform Clumps, 41, pp. 443–451.

Goodman, A. A., Benson, P. J., Fuller, G. A. and Myers, P. C. (1993). Dense cores in dark clouds. VIII - Velocity gradients, ApJ 406, pp. 528–547, doi:10.1086/172465.

Gorti, U., Dullemond, C. P. and Hollenbach, D. (2009). Time Evolution of Viscous Circumstellar Disks due to Photoevaporation by Far-Ultraviolet, Extreme-Ultraviolet, and X-ray Radiation from the Central Star, ApJ 705, pp. 1237–1251, doi:10.1088/0004-637X/705/2/1237.

Gorti, U. and Hollenbach, D. (2002). Photoevaporation of Clumps in Photodissociation Regions, ApJ 573, pp. 215–237, doi:10.1086/340556.

Gorti, U. and Hollenbach, D. (2004). Models of Chemistry, Thermal Balance, and Infrared Spectra from Intermediate-Aged Disks around G and K Stars, ApJ 613, pp. 424–447, doi:10.1086/422406.

Gorti, U. and Hollenbach, D. (2008). Line Emission from Gas in Optically Thick Dust Disks around Young Stars, ApJ 683, 287-303, doi:10.1086/589616.

Gorti, U. and Hollenbach, D. (2009). Photoevaporation of Circumstellar Disks By Far-Ultraviolet, Extreme-Ultraviolet and X-Ray Radiation from the Central Star, ApJ 690, pp. 1539–1552, doi: 10.1088/0004-637X/690/2/1539.

Gorti, U., Hollenbach, D. and Dullemond, C. P. (2015). The Impact of Dust Evolution and Photoe- vaporation on Disk Dispersal, ApJ 804, 29, doi:10.1088/0004-637X/804/1/29.

Gorti, U., Liseau, R., S´andor, Z. and Clarke, C. (2016). Disk Dispersal: Theoretical Understanding and Observational Constraints, Space Sci. Rev. 205, pp. 125–152, doi:10.1007/s11214-015-0228-x.

Gressel, O., Turner, N. J., Nelson, R. P. and McNally, C. P. (2015). Global Simulations of Protoplanetary Disks With Ohmic Resistivity and Ambipolar Diffusion, ApJ 801, 84, doi: 10.1088/0004-637X/801/2/84.

Gu¨del, M., Briggs, K. R., Arzner, K., Audard, M., Bouvier, J., Feigelson, E. D., Franciosini, E., Glauser, A., Grosso, N., Micela, G., Monin, J.-L., Montmerle, T., Padgett, D. L., Palla, F., Pillitteri, I., Rebull, L., Scelsi, L., Silva, B., Skinner, S. L., Stelzer, B. and Telleschi, A. (2007a). The XMM-Newton extended survey of the Taurus molecular cloud (XEST), A&A 468, pp. 353– 377, doi:10.1051/0004-6361:20065724.

Gu¨del, M. and Naz´e, Y. (2009). X-ray spectroscopy of stars, A&A Rev. 17, pp. 309–408, doi: 10.1007/s00159-009-0022-4.

Gu¨del, M., Skinner, S. L., Briggs, K. R., Audard, M., Arzner, K. and Telleschi, A. (2005). Evidence for an X-Ray Jet in DG Tauri A? ApJ 626, pp. L53–L56, doi:10.1086/431666.

Gu¨del, M., Telleschi, A., Audard, M., Skinner, S. L., Briggs, K. R., Palla, F. and Dougados, C. (2007b). X-rays from jet-driving protostars and T Tauri stars, A&A 468, pp. 515–528, doi:10. 1051/0004-6361:20065736.

Gullbring, E., Hartmann, L., Bricen˜o, C. and Calvet, N. (1998). Disk Accretion Rates for T Tauri Stars, ApJ 492, pp. 323–341, doi:10.1086/305032.

Haisch, K. E., Jr., Lada, E. A. and Lada, C. J. (2001). Disk Frequencies and Lifetimes in Young Clusters, ApJ 553, pp. L153–L156, doi:10.1086/320685.

Harnden, F. R., Jr., Branduardi, G., Elvis, M., Gorenstein, P., Grindlay, J., Pye, J. P., Rosner, R., Topka, K. and Vaiana, G. S. (1979). Discovery of an X-ray star association in VI Cygni /Cyg OB2/, ApJ 234, pp. L51–L54, doi:10.1086/183107.

Hartigan, P., Kenyon, S. J., Hartmann, L., Strom, S. E., Edwards, S., Welty, A. D. and Stauffer, J. (1991). Optical excess emission in T Tauri stars, ApJ 382, pp. 617–635, doi:10.1086/170749.

Hayashi, C. (1981). Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula, Progress of Theoretical Physics Supplement 70, pp. 35–53, doi:10.1143/PTPS.70.35.

Heinzeller, D., Nomura, H., Walsh, C. and Millar, T. J. (2011). Chemical Evolution of Protoplanetary Disks—The Effects of Viscous Accretion, Turbulent Mixing, and Disk Winds, ApJ 731, 115, doi: 10.1088/0004-637X/731/2/115.

Heithausen, A., Bensch, F., Stutzki, J., Falgarone, E. and Panis, J. F. (1998). The IRAM key project: small-scale structure of pre-star forming regions. Combined mass spectra and scaling laws, A&A 331, pp. L65–L68.

Hern´andez, J., Hartmann, L., Megeath, T., Gutermuth, R., Muzerolle, J., Calvet, N., Vivas, A. K., Bricen˜o, C., Allen, L., Stauffer, J., Young, E. and Fazio, G. (2007). A Spitzer Space Telescope Study of Disks in the Young σ Orionis Cluster, ApJ 662, pp. 1067–1081, doi:10.1086/513735.

Heyer, M. H. and Terebey, S. (1998). The Anatomy of the Perseus Spiral Arm: 12CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex, ApJ 502, pp. 265–277, doi:10.1086/ 305881.

Hillier, D. J. and Miller, D. L. (1998). The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows, ApJ 496, pp. 407–427, doi:10.1086/305350.

Hollenbach, D., Johnstone, D., Lizano, S. and Shu, F. (1994). Photoevaporation of disks around massive stars and application to ultracompact H II regions, ApJ 428, pp. 654–669, doi:10.1086/ 174276.

Hollenbach, D. and McKee, C. F. (1989). Molecule formation and infrared emission in fast interstellar shocks. III - Results for J shocks in molecular clouds, ApJ 342, pp. 306–336, doi:10.1086/167595.

Hollenbach, D. J., Yorke, H. W. and Johnstone, D. (2000). Disk Dispersal around Young Stars, Protostars and Planets IV , p. 401.

Hutchison, M. A., Laibe, G. and Maddison, S. T. (2016a). On the maximum grain size entrained by photoevaporative winds, MNRAS 463, pp. 2725–2734, doi:10.1093/mnras/stw2191.

Hutchison, M. A., Price, D. J., Laibe, G. and Maddison, S. T. (2016b). On dust entrainment in photoevaporative winds, MNRAS 461, pp. 742–759, doi:10.1093/mnras/stw1126.

Jayawardhana, R., Coffey, J., Scholz, A., Brandeker, A. and van Kerkwijk, M. H. (2006). Accretion Disks around Young Stars: Lifetimes, Disk Locking, and Variability, ApJ 648, pp. 1206–1218, doi:10.1086/506171.

Johnson, J. A., Aller, K. M., Howard, A. W. and Crepp, J. R. (2010). Giant Planet Occurrence in the Stellar Mass-Metallicity Plane, PASP 122, p. 905, doi:10.1086/655775.

Johnson, J. A., Butler, R. P., Marcy, G. W., Fischer, D. A., Vogt, S. S., Wright, J. T. and Peek, K. M. G. (2007). A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass, ApJ 670, pp. 833–840, doi:10.1086/521720.

Johnstone, D., Hollenbach, D. and Bally, J. (1998). Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula, ApJ 499, pp. 758– 776, doi:10.1086/305658.

Kataoka, A., Tanaka, H., Okuzumi, S. and Wada, K. (2013). Fluffy dust forms icy planetesimals by static compression, A&A 557, L4, doi:10.1051/0004-6361/201322151.

Kenyon, S. J. and Hartmann, L. (1987). Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion, ApJ 323, pp. 714–733, doi:10.1086/165866.

Kenyon, S. J. and Hartmann, L. (1995). Pre-Main-Sequence Evolution in the Taurus-Auriga Molec- ular Cloud, ApJS 101, p. 117, doi:10.1086/192235.

Kessel-Deynet, O. and Burkert, A. (2003). Radiation-driven implosion of molecular cloud cores, MNRAS 338, pp. 545–554, doi:10.1046/j.1365-8711.2003.05737.x.

Klein, R. I., Sandford, M. T., II and Whitaker, R. W. (1980). Two-dimensional radiation- hydrodynamics calculations of the formation of the O-B associations in dense molecular clouds, Space Sci. Rev. 27, pp. 275–281, doi:10.1007/BF00168309.

Koepferl, C. M., Ercolano, B., Dale, J., Teixeira, P. S., Ratzka, T. and Spezzi, L. (2013). Disc clearing of young stellar objects: evidence for fast inside-out dispersal, MNRAS 428, pp. 3327– 3354, doi:10.1093/mnras/sts276.

Kramer, C., Stutzki, J., Rohrig, R. and Corneliussen, U. (1998). Clump mass spectra of molecular clouds, A&A 329, pp. 249–264.

Kuiper, R., Klahr, H., Dullemond, C., Kley, W. and Henning, T. (2010). Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star forma- tion, A&A 511, A81, doi:10.1051/0004-6361/200912355.

Kuiper, R. and Klessen, R. S. (2013). The reliability of approximate radiation transport methods for irradiated disk studies, A&A 555, A7, doi:10.1051/0004-6361/201321404.

Lada, C. J. and Adams, F. C. (1992). Interpreting infrared color-color diagrams - Circumstellar disks around low- and intermediate-mass young stellar objects, ApJ 393, pp. 278–288, doi:10. 1086/171505.

Lada, E. A. and Lada, C. J. (1995). Near-infrared images of IC 348 and the luminosity functions of young embedded star clusters, AJ 109, pp. 1682–1696, doi:10.1086/117396.

Larson, R. B. (1981). Turbulence and star formation in molecular clouds, MNRAS 194, pp. 809–826, doi:10.1093/mnras/194.4.809.

Lee, H.-H., Bettens, R. P. A. and Herbst, E. (1996). Fractional abundances of molecules in dense interstellar clouds: A compendium of recent model results. A&AS 119, pp. 111–114.

Lefloch, B. and Lazareff, B. (1994). Cometary globules. 1: Formation, evolution and morphology, A&A 289, pp. 559–578.

Liedahl, D. A., Osterheld, A. L. and Goldstein, W. H. (1995). New calculations of Fe L-shell X-ray spectra in high-temperature plasmas, ApJ 438, pp. L115–L118, doi:10.1086/187729.

Liffman, K. (2003). The Gravitational Radius of an Irradiated Disk, PASA 20, pp. 337–339, doi: 10.1071/AS03019.

L´opez-Mart´ın, L., Raga, A. C., Mellema, G., Henney, W. J. and Cant´o, J. (2001). Photoevaporating Flows from the Cometary Knots in the Helix Nebula (NGC 7293), ApJ 548, pp. 288–295, doi: 10.1086/318654.

Lucy, L. B. (1982). X-ray emission from the winds of hot stars. II, ApJ 255, pp. 286–292, doi: 10.1086/159827.

Lucy, L. B. and White, R. L. (1980). X-ray emission from the winds of hot stars, ApJ 241, pp. 300–305, doi:10.1086/158342.

Lynden-Bell, D. and Pringle, J. E. (1974). The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, pp. 603–637, doi:10.1093/mnras/168.3.603.

Maloney, P. R., Hollenbach, D. J. and Tielens, A. G. G. M. (1996). X-Ray–irradiated Molecular Gas. I. Physical Processes and General Results, ApJ 466, p. 561, doi:10.1086/177532.

Mamajek, E. E. (2009). Initial Conditions of Planet Formation: Lifetimes of Primordial Disks, in T. Usuda, M. Tamura and M. Ishii. eds., American Institute of Physics Conference Series, American Institute of Physics Conference Series, Vol. 1158, Melville, NY: AIP, pp. 3–10, doi: 10.1063/1.3215910.

Martins, F., Schaerer, D. and Hillier, D. J. (2002). On the effective temperature scale of O stars, A&A 382, pp. 999–1004, doi:10.1051/0004-6361:20011703.

Masunaga, H. and Inutsuka, S.-i. (2000). A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar, ApJ 531, pp. 350–365, doi:10.1086/308439.

Mathis, J. S., Rumpl, W. and Nordsieck, K. H. (1977). The size distribution of interstellar grains, ApJ 217, pp. 425–433, doi:10.1086/155591.

McCaughrean, M. J. and O’dell, C. R. (1996). Direct Imaging of Circumstellar Disks in the Orion Nebula, AJ 111, p. 1977, doi:10.1086/117934.

McElroy, D., Walsh, C., Markwick, A. J., Cordiner, M. A., Smith, K. and Millar, T. J. (2013). The UMIST database for astrochemistry 2012, A&A 550, A36, doi:10.1051/0004-6361/201220465.

McNamara, D. H. and Colton, D. J. (1969). Line-Blanketing Effects on the uvbyβ Photometric System, PASP 81, p. 826, doi:10.1086/128855.

Megeath, S. T., Cox, P., Bronfman, L. and Roelfsema, P. R. (1996). Evidence for ongoing star formation in the Carina nebula. A&A 305, p. 296.

Mellema, G., Raga, A. C., Canto, J., Lundqvist, P., Balick, B., Steffen, W. and Noriega-Crespo, A. (1998). Photo-evaporation of clumps in planetary nebulae, A&A 331, pp. 335–346.

Mewe, R., Gronenschild, E. H. B. M. and van den Oord, G. H. J. (1985). Calculated X-radiation from optically thin plasmas. V, A&AS 62, pp. 197–254.

Meyer, M. R., Backman, D. E., Weinberger, A. J. and Wyatt, M. C. (2007). Evolution of Circum- stellar Disks Around Normal Stars: Placing Our Solar System in Context, Protostars and Planets V , pp. 573–588.

Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C. and Ferrari, A. (2007). PLUTO: A Numerical Code for Computational Astrophysics, ApJS 170, pp. 228–242, doi:10.1086/513316.

Milne, E. A. (1928). The total absorption in the Sun’s reversing layer, The Observatory 51, pp. 88–96.

Minamidani, T., Tanaka, T., Mizuno, Y., Mizuno, N., Kawamura, A., Onishi, T., Hasegawa, T., Tatematsu, K., Takekoshi, T., Sorai, K., Moribe, N., Torii, K., Sakai, T., Muraoka, K., Tanaka, K., Ezawa, H., Kohno, K., Kim, S., Rubio, M. and Fukui, Y. (2011). Dense Clumps in Giant Molecular Clouds in the Large Magellanic Cloud: Density and Temperature Derived from 13CO(J = 3-2) Observations, AJ 141, 73, doi:10.1088/0004-6256/141/3/73.

Miura, R., Okumura, S. K., Tosaki, T., Tamura, Y., Kurono, Y., Kuno, N., Nakanishi, K., Sakamoto, S., Hasegawa, T. and Kawabe, R. (2010). Aperture Synthesis Observations of CO, HCN, and 89 GHz Continuum Emission Toward NGC 604 in M33: Sequential Star Formation Induced by a Supergiant H II Region, ApJ 724, pp. 1120–1132, doi:10.1088/0004-637X/724/2/1120.

Mortier, A., Santos, N. C., Sousa, S., Israelian, G., Mayor, M. and Udry, S. (2013). On the func- tional form of the metallicity-giant planet correlation, A&A 551, A112, doi:10.1051/0004-6361/ 201220707.

Motte, F., Andre, P. and Neri, R. (1998). The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping, A&A 336, pp. 150–172.

Mun˜oz, D. J., Mardones, D., Garay, G., Rebolledo, D., Brooks, K. and Bontemps, S. (2007). Massive Clumps in the NGC 6334 Star-forming Region, ApJ 668, pp. 906–917, doi:10.1086/521206.

Nakatani, R., Hosokawa, T., Yoshida, N., Nomura, H. and Kuiper, R. (2018a). Radiation Hy- drodynamics Simulations of Photoevaporation of Protoplanetary Disks by Ultraviolet Radiation: Metallicity Dependence, ApJ 857, 57, doi:10.3847/1538-4357/aab70b.

Nakatani, R., Hosokawa, T., Yoshida, N., Nomura, H. and Kuiper, R. (2018b). Radiation Hydrody- namics Simulations of Photoevaporation of Protoplanetary Disks. II. Metallicity Dependence of UV and X-Ray Photoevaporation, ApJ 865, 75, doi:10.3847/1538-4357/aad9fd.

Nakatani, R. and Yoshida, N. (2018). Photoevaporation of Molecular Gas Clumps Illuminated by External Massive Stars: Clump Lifetimes and Metallicity Dependence, ArXiv e-prints .

Natta, A., Testi, L., Muzerolle, J., Randich, S., Comer´on, F. and Persi, P. (2004). Accretion in brown dwarfs: An infrared view, A&A 424, pp. 603–612, doi:10.1051/0004-6361:20040356.

Naz´e, Y., Broos, P. S., Oskinova, L., Townsley, L. K., Cohen, D., Corcoran, M. F., Evans, N. R., Gagn´e, M., Moffat, A. F. J., Pittard, J. M., Rauw, G., ud-Doula, A. and Walborn, N. R. (2011). Global X-ray Properties of the O and B Stars in Carina, ApJS 194, 7, doi:10.1088/0067-0049/ 194/1/7.

Nelson, R. P. and Langer, W. D. (1997). The Dynamics of Low-Mass Molecular Clouds in External Radiation Fields, ApJ 482, pp. 796–826, doi:10.1086/304167.

Nomura, H., Aikawa, Y., Tsujimoto, M., Nakagawa, Y. and Millar, T. J. (2007). Molecular Hydrogen Emission from Protoplanetary Disks. II. Effects of X-Ray Irradiation and Dust Evolution, ApJ 661, pp. 334–353, doi:10.1086/513419.

Nomura, H. and Millar, T. J. (2005). Molecular hydrogen emission from protoplanetary disks, A&A 438, pp. 923–938, doi:10.1051/0004-6361:20052809.

O’Dell, C. R., Balick, B., Hajian, A. R., Henney, W. J. and Burkert, A. (2002). Knots in Nearby Planetary Nebulae, AJ 123, pp. 3329–3347, doi:10.1086/340726.

O’dell, C. R. and Handron, K. D. (1996). Cometary Knots in the Helix Nebula, AJ 111, p. 1630, doi:10.1086/117902.

O’Dell, C. R., Henney, W. J. and Ferland, G. J. (2007). Determination of the Physical Conditions of the Knots in the Helix Nebula from Optical and Infrared Observations, AJ 133, pp. 2343–2356, doi:10.1086/513011.

Oka, T., Hasegawa, T., Sato, F., Tsuboi, M., Miyazaki, A. and Sugimoto, M. (2001). Statistical Properties of Molecular Clouds in the Galactic Center, ApJ 562, pp. 348–362, doi:10.1086/322976.

Oliveira, I., Pontoppidan, K. M., Mer´ın, B., van Dishoeck, E. F., Lahuis, F., Geers, V. C., Jørgensen, J. K., Olofsson, J., Augereau, J.-C. and Brown, J. M. (2010). A Spitzer Survey of Protoplanetary Disk Dust in the Young Serpens Cloud: How do Dust Characteristics Evolve with Time? ApJ 714, pp. 778–798, doi:10.1088/0004-637X/714/1/778.

Omukai, K. (2000). Protostellar Collapse with Various Metallicities, ApJ 534, pp. 809–824, doi: 10.1086/308776.

Omukai, K., Hosokawa, T. and Yoshida, N. (2010). Low-metallicity Star Formation: Prestellar Collapse and Protostellar Accretion in the Spherical Symmetry, ApJ 722, pp. 1793–1815, doi: 10.1088/0004-637X/722/2/1793.

Omukai, K., Tsuribe, T., Schneider, R. and Ferrara, A. (2005). Thermal and Fragmentation Prop- erties of Star-forming Clouds in Low-Metallicity Environments, ApJ 626, pp. 627–643, doi: 10.1086/429955.

Oort, J. H. and Spitzer, L., Jr. (1955). Acceleration of Interstellar Clouds by O-Type Stars. ApJ 121, p. 6, doi:10.1086/145958.

Oskinova, L. M., Hamann, W.-R., Cassinelli, J. P., Brown, J. C. and Todt, H. (2011). X-ray emission from massive stars with magnetic fields, Astronomische Nachrichten 332, p. 988, doi:10.1002/ asna.201111602.

Osterbrock, D. E. (1989). Astrophysics of gaseous nebulae and active galactic nuclei, Mill Valley, CA: Univ. Science Books.

Osterbrock, D. E. and Ferland, G. J. (2006). Astrophysics of gaseous nebulae and active galactic nuclei, Mill Valley, CA: Univ. Science Books.

Ostriker, E. C. (2007). Non-stellar sources of turbulence in the interstellar medium, in B. G. Elmegreen and J. Palous. eds., Triggered Star Formation in a Turbulent ISM, IAU Symposium, Vol. 237, Cambridge: Cambridge Univ. Press, pp. 70–75, doi:10.1017/S174392130700124X.

Owen, J. E., Clarke, C. J. and Ercolano, B. (2012). On the theory of disc photoevaporation, MNRAS 422, pp. 1880–1901, doi:10.1111/j.1365-2966.2011.20337.x.

Owen, J. E., Ercolano, B. and Clarke, C. J. (2011a). Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation, MNRAS 412, pp. 13–25, doi:10.1111/j.1365-2966. 2010.17818.x.

Owen, J. E., Ercolano, B. and Clarke, C. J. (2011b). The imprint of photoevaporation on edge-on discs, MNRAS 411, pp. 1104–1110, doi:10.1111/j.1365-2966.2010.17750.x.

Owen, J. E., Ercolano, B., Clarke, C. J. and Alexander, R. D. (2010). Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs, MNRAS 401, pp. 1415–1428, doi:10.1111/j.1365-2966.2009.15771.x.

Owocki, S. P., Castor, J. I. and Rybicki, G. B. (1988). Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model, ApJ 335, pp. 914–930, doi:10.1086/166977.

Pascucci, I., Gorti, U., Hollenbach, D., Najita, J., Meyer, M. R., Carpenter, J. M., Hillenbrand, L. A., Herczeg, G. J., Padgett, D. L., Mamajek, E. E., Silverstone, M. D., Schlingman, W. M., Kim, J. S., Stobie, E. B., Bouwman, J., Wolf, S., Rodmann, J., Hines, D. C., Lunine, J. and Malhotra, R. (2006). Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks around Sun-like Stars, ApJ 651, pp. 1177–1193, doi:10.1086/507761.

Pauldrach, A. W. A., Hoffmann, T. L. and Lennon, M. (2001). Radiation-driven winds of hot luminous stars. XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres, A&A 375, pp. 161–195, doi:10.1051/0004-6361:20010805.

Pavlakis, K. G., Williams, R. J. R., Dyson, J. E., Falle, S. A. E. G. and Hartquist, T. W. (2001). The modification by diffuse radiation of “cometary tail” formation behind globules, A&A 369, pp. 263–268, doi:10.1051/0004-6361:20010070.

Peterson, R. C. (2011). The Extreme Overabundance of Molybdenum in Two Metal-poor Stars, ApJ 742, 21, doi:10.1088/0004-637X/742/1/21.

Pinte, C., Dent, W. R. F., M´enard, F., Hales, A., Hill, T., Cortes, P. and de Gregorio-Monsalvo, I. (2016). Dust and Gas in the Disk of HL Tauri: Surface Density, Dust Settling, and Dust-to-gas Ratio, ApJ 816, 25, doi:10.3847/0004-637X/816/1/25.

Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T. and Fong, W. (1994). Composition and radiative properties of grains in molecular clouds and accretion disks, ApJ 421, pp. 615–639, doi:10.1086/173677.

Raga, A. C., Henney, W., Vasconcelos, J., Cerqueira, A., Esquivel, A. and Rodr´ıguez-Gonz´alez, A. (2009). Multiple clump structures within photoionized regions, MNRAS 392, pp. 964–968, doi:10.1111/j.1365-2966.2008.14097.x.

Raga, A. C., Steffen, W. and Gonz´alez, R. F. (2005). 3D Simulations of the Fragmentation of Photoevaporating Clumps Embedded in a Stellar Wind, 41, pp. 45–55.

Reipurth, B. (1983). Star formation in BOK globules and low-mass clouds. I - The cometary globules in the GUM Nebula, A&A 117, pp. 183–198.

Ribas, A´., Bouy, H. and Mer´ın, B. (2015). Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations, A&A 576, A52, doi:10.1051/0004-6361/201424846.

Ribas, A´., Mer´ın, B., Bouy, H. and Maud, L. T. (2014). Disk evolution in the solar neighborhood. I. Disk frequencies from 1 to 100 Myr, A&A 561, A54, doi:10.1051/0004-6361/201322597.

Rice, W. K. M., Wood, K., Armitage, P. J., Whitney, B. A. and Bjorkman, J. E. (2003). Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae, MNRAS 342, pp. 79–85, doi:10.1046/j.1365-8711.2003.06515.x.

Richling, S. and Yorke, H. W. (1997). Photoevaporation of protostellar disks. II. The importance of UV dust properties and ionizing flux. A&A 327, pp. 317–324.

Richling, S. and Yorke, H. W. (1998). Photoevaporation of protostellar disks. IV. Externally illumi- nated disks, A&A 340, pp. 508–520.

Richling, S. and Yorke, H. W. (2000). Photoevaporation of Protostellar Disks. V. Circumstellar Disks under the Influence of Both Extreme-Ultraviolet and Far-Ultraviolet Radiation, ApJ 539, pp. 258–272, doi:10.1086/309198.

Rubio, M., Contursi, A., Lequeux, J., Probst, R., Barb´a, R., Boulanger, F., Cesarsky, D. and Maoli, R. (2000). Multiwavelength observations of N 66 in the SMC: unveiling photodissociation interfaces and star formation, A&A 359, pp. 1139–1146.

Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. ApJ 121, p. 161, doi: 10.1086/145971.

Sandford, M. T., II, Whitaker, R. W. and Klein, R. I. (1982). Radiation-driven implosions in molec- ular clouds, ApJ 260, pp. 183–201, doi:10.1086/160245.

Sandford, M. T., II, Whitaker, R. W. and Klein, R. I. (1984). Radiatively driven dust-bounded implosions - Formation and stability of dense globules, ApJ 282, pp. 178–190, doi:10.1086/162189.

Santoro, F. and Shull, J. M. (2006). Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars, ApJ 643, pp. 26–37, doi:10.1086/501518.

Schaerer, D. and Schmutz, W. (1994). Hydrodynamic atmosphere models for hot luminous stars, A&A 288, pp. 231–254.

Seward, F. D., Forman, W. R., Giacconi, R., Griffiths, R. E., Harnden, F. R., Jr., Jones, C. and Pye, J. P. (1979). X-rays from Eta Carinae and the surrounding nebula, ApJ 234, pp. L55–L58, doi:10.1086/183108.

Shakura, N. I. and Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. A&A 24, pp. 337–355.

Shapiro, P. R., Iliev, I. T. and Raga, A. C. (2004). Photoevaporation of cosmological minihaloes during reionization, MNRAS 348, pp. 753–782, doi:10.1111/j.1365-2966.2004.07364.x.

Shu, F. H. (1977). Self-similar collapse of isothermal spheres and star formation, ApJ 214, pp. 488–497, doi:10.1086/155274.

Shull, J. M. and van Steenberg, M. E. (1985). X-ray secondary heating and ionization in quasar emission-line clouds, ApJ 298, pp. 268–274, doi:10.1086/163605.

Simon, J. B., Bai, X.-N., Armitage, P. J., Stone, J. M. and Beckwith, K. (2013a). Turbulence in the Outer Regions of Protoplanetary Disks. II. Strong Accretion Driven by a Vertical Magnetic Field, ApJ 775, 73, doi:10.1088/0004-637X/775/1/73.

Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J. and Beckwith, K. (2013b). Turbulence in the Outer Regions of Protoplanetary Disks. I. Weak Accretion with No Vertical Magnetic Flux, ApJ 764, 66, doi:10.1088/0004-637X/764/1/66.

Skrutskie, M. F., Dutkevitch, D., Strom, S. E., Edwards, S., Strom, K. M. and Shure, M. A. (1990). A sensitive 10-micron search for emission arising from circumstellar dust associated with solar-type pre-main-sequence stars, AJ 99, pp. 1187–1195, doi:10.1086/115407.

Spitzer, L. (1978). Physical processes in the interstellar medium, New York: Wiley-Interscience. Stahler, S. W. and Palla, F. (2005). The Formation of Stars, New York: Wiley-VCH.

Stahler, S. W., Shu, F. H. and Taam, R. E. (1980). The evolution of protostars. I - Global formulation and results, ApJ 241, pp. 637–654, doi:10.1086/158377.

St¨orzer, H. and Hollenbach, D. (1998). On the [O I] λ6300 Line Emission from the Photoevaporating Circumstellar Disks in the Orion Nebula, ApJ 502, pp. L71–L74, doi:10.1086/311487.

St¨orzer, H. and Hollenbach, D. (1999). Photodissociation Region Models of Photoevaporating Circumstellar Disks and Application to the Proplyds in Orion, ApJ 515, pp. 669–684, doi: 10.1086/307055.

Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S. and Skrutskie, M. F. (1989). Circumstellar ma- terial associated with solar-type pre-main-sequence stars - A possible constraint on the timescale for planet building, AJ 97, pp. 1451–1470, doi:10.1086/115085.

Sugitani, K., Fukui, Y. and Ogura, K. (1991). A catalog of bright-rimmed clouds with IRAS point sources: Candidates for star formation by radiation-driven implosion. I - The Northern Hemi- sphere, ApJS 77, pp. 59–66, doi:10.1086/191597.

Sugitani, K. and Ogura, K. (1994). A catalog of bright-rimmed clouds with IRAS point sources: Candidates for star formation by radiation-driven implosion. 2: The southern hemisphere, ApJS 92, pp. 163–172, doi:10.1086/191964.

Sugitani, K., Tamura, M. and Ogura, K. (1995). Young Star Clusters in Bright-rimmed Clouds: Small-Scale Sequential Star Formation? ApJ 455, p. L39, doi:10.1086/309808.

Suzuki, T. K. and Inutsuka, S.-i. (2009). Disk Winds Driven by Magnetorotational Instability and Dispersal of Protoplanetary Disks, ApJ 691, pp. L49–L54, doi:10.1088/0004-637X/691/1/L49.

Suzuki, T. K., Muto, T. and Inutsuka, S.-i. (2010). Protoplanetary Disk Winds via Magnetorotational Instability: Formation of an Inner Hole and a Crucial Assist for Planet Formation, ApJ 718, pp. 1289–1304, doi:10.1088/0004-637X/718/2/1289.

Takagi, Y., Itoh, Y. and Oasa, Y. (2014). Disk dissipation timescale of pre-main sequence stars in Taurus*, PASJ 66, 88, doi:10.1093/pasj/psu062.

Takeuchi, T., Clarke, C. J. and Lin, D. N. C. (2005). The Differential Lifetimes of Protostellar Gas and Dust Disks, ApJ 627, pp. 286–292, doi:10.1086/430393.

Tanaka, K. E. I., Nakamoto, T. and Omukai, K. (2013). Photoevaporation of Circumstellar Disks Revisited: The Dust-free Case, ApJ 773, 155, doi:10.1088/0004-637X/773/2/155.

Tanaka, K. E. I., Tan, J. C. and Zhang, Y. (2017). The Impact of Feedback During Massive Star Formation by Core Accretion, ApJ 835, 32, doi:10.3847/1538-4357/835/1/32.

Telleschi, A., Gu¨del, M., Briggs, K., Audard, M., Ness, J.-U. and Skinner, S. L. (2005). Coronal Evo- lution of the Sun in Time: High-Resolution X-Ray Spectroscopy of Solar Analogs with Different Ages, ApJ 622, pp. 653–679, doi:10.1086/428109.

Tenorio-Tagle, G. (1977). The time evolution of a globule immersed in an H II region, A&A 54, pp. 517–524.

Testi, L. and Sargent, A. I. (1998). Star Formation in Clusters: A Survey of Compact Millimeter- Wave Sources in the Serpens Core, ApJ 508, pp. L91–L94, doi:10.1086/311724.

Turner, N. J., Fromang, S., Gammie, C., Klahr, H., Lesur, G., Wardle, M. and Bai, X.-N. (2014). Transport and Accretion in Planet-Forming Disks, Protostars and Planets VI , pp. 411–432doi: 10.2458/azu uapress 9780816531240-ch018.

Vicente, S., Bern´e, O., Tielens, A. G. G. M., Hu´elamo, N., Pantin, E., Kamp, I. and Carmona, A. (2013). Polycyclic Aromatic Hydrocarbon Emission in the Proplyd HST10: What is the Mecha- nism behind Photoevaporation? ApJ 765, L38, doi:10.1088/2041-8205/765/2/L38.

Vidotto, A. A., Gregory, S. G., Jardine, M., Donati, J. F., Petit, P., Morin, J., Folsom, C. P., Bouvier, J., Cameron, A. C., Hussain, G., Marsden, S., Waite, I. A., Fares, R., Jeffers, S. and do Nascimento, J. D. (2014). Stellar magnetism: empirical trends with age and rotation, MNRAS 441, pp. 2361–2374, doi:10.1093/mnras/stu728.

Walsh, C., Nomura, H., Millar, T. J. and Aikawa, Y. (2012). Chemical Processes in Protoplanetary Disks. II. On the Importance of Photochemistry and X-Ray Ionization, ApJ 747, 114, doi:10. 1088/0004-637X/747/2/114.

Wang, J. and Fischer, D. A. (2015). Revealing a Universal Planet-Metallicity Correlation for Planets of Different Sizes Around Solar-type Stars, AJ 149, 14, doi:10.1088/0004-6256/149/1/14.

Wang, L., Bai, X.-N. and Goodman, J. (2018). Global Simulations of Protoplanetary Disk Outflows with Coupled Non-ideal Magnetohydrodynamics and Consistent Thermochemistry, arXiv e-prints.

Wang, L. and Goodman, J. (2017). Hydrodynamic Photoevaporation of Protoplanetary Disks with Consistent Thermochemistry, ApJ 847, 11, doi:10.3847/1538-4357/aa8726.

Weidenschilling, S. J. (1977). The distribution of mass in the planetary system and solar nebula, Ap&SS 51, pp. 153–158, doi:10.1007/BF00642464.

White, R. J. and Basri, G. (2003). Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga, ApJ 582, pp. 1109–1122, doi:10.1086/344673.

Williams, J. P., Blitz, L. and McKee, C. F. (2000). The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF, Protostars and Planets IV , p. 97.

Williams, R. J. R., Ward-Thompson, D. and Whitworth, A. P. (2001). Hydrodynamics of photoion- ized columns in the Eagle Nebula, M 16, MNRAS 327, pp. 788–798, doi:10.1046/j.1365-8711. 2001.04757.x.

Wilms, J., Allen, A. and McCray, R. (2000). On the Absorption of X-Rays in the Interstellar Medium, ApJ 542, pp. 914–924, doi:10.1086/317016.

Woitke, P., Kamp, I. and Thi, W.-F. (2009). Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim, A&A 501, pp. 383–406, doi:10.1051/0004-6361/ 200911821.

Yan, M., Sadeghpour, H. R. and Dalgarno, A. (1998). Photoionization Cross Sections of He and H2, ApJ 496, pp. 1044–1050, doi:10.1086/305420.

Yan, M., Sadeghpour, H. R. and Dalgarno, A. (2001). Erratum: Photoionization Cross Sections of He and H2, ApJ 559, pp. 1194–1194, doi:10.1086/322775.

Yang, H., Herczeg, G. J., Linsky, J. L., Brown, A., Johns-Krull, C. M., Ingleby, L., Calvet, N., Bergin, E. and Valenti, J. A. (2012). A Far-ultraviolet Atlas of Low-resolution Hubble Space Telescope Spectra of T Tauri Stars, ApJ 744, 121, doi:10.1088/0004-637X/744/2/121.

Yasui, C., Kobayashi, N., Saito, M. and Izumi, N. (2016a). Low-metallicity Young Clusters in the Outer Galaxy. II. Sh 2-208, AJ 151, 115, doi:10.3847/0004-6256/151/5/115.

Yasui, C., Kobayashi, N., Tokunaga, A. T., Saito, M. and Izumi, N. (2016b). Low-metallicity Young Clusters in the Outer Galaxy. I. Sh 2-207, AJ 151, 50, doi:10.3847/0004-6256/151/3/50.

Yasui, C., Kobayashi, N., Tokunaga, A. T., Saito, M. and Tokoku, C. (2009). The Lifetime of Proto- planetary Disks in a Low-metallicity Environment, ApJ 705, pp. 54–63, doi:10.1088/0004-637X/ 705/1/54.

Yasui, C., Kobayashi, N., Tokunaga, A. T., Saito, M. and Tokoku, C. (2010). Short Lifetime of Protoplanetary Disks in Low-metallicity Environments, ApJ 723, pp. L113–L116, doi:10.1088/ 2041-8205/723/1/L113.

Yorke, H. W., Bodenheimer, P. and Laughlin, G. (1995). The formation of protostellar disks. 2: Disks around intermediate-mass stars, ApJ 443, pp. 199–208, doi:10.1086/175514.

Yorke, H. W. and Welz, A. (1996). Photoevaporation of protostellar disks. I. The evolution of disks around early B stars. A&A 315, pp. 555–564.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る