リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chern-Simons gravity dual of BCFT」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chern-Simons gravity dual of BCFT

Takayanagi, Tadashi Uetoko, Takahiro 京都大学 DOI:10.1007/JHEP04(2021)193

2021.04

概要

In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.

この論文で使われている画像

参考文献

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[2] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

– 21 –

JHEP04(2021)193

Pab ea ∧ ω b = ea ∧ ωa − ea na ∧ ωb nb .

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[3] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes

with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[4] T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602

[arXiv:1105.5165] [INSPIRE].

[5] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043

[arXiv:1108.5152] [INSPIRE].

[6] M. Gutperle and J. Samani, Holographic RG-flows and boundary CFTs, Phys. Rev. D 86

(2012) 106007 [arXiv:1207.7325] [INSPIRE].

[8] N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a c-theorem in defect CFT,

JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].

[9] Y. Sato, Boundary entropy under ambient RG flow in the AdS/BCFT model, Phys. Rev. D

101 (2020) 126004 [arXiv:2004.04929] [INSPIRE].

[10] M. Fujita, M. Kaminski and A. Karch, SL(2, Z) action on AdS/BCFT and Hall

conductivities, JHEP 07 (2012) 150 [arXiv:1204.0012] [INSPIRE].

[11] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, A. O’Bannon and J. Wu, Holographic

impurities and Kondo effect, Fortsch. Phys. 64 (2016) 322 [arXiv:1511.09362] [INSPIRE].

[12] T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562 [INSPIRE].

[13] D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement

entropy in AdS4 /BCFT3 , JHEP 11 (2017) 076 [arXiv:1708.05080] [INSPIRE].

[14] D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in AdS4 /BCFT3 and

the Willmore functional, JHEP 08 (2018) 164 [arXiv:1805.11551] [INSPIRE].

[15] Y. Hikida, Y. Kusuki and T. Takayanagi, Eigenstate thermalization hypothesis and modular

invariance of two-dimensional conformal field theories, Phys. Rev. D 98 (2018) 026003

[arXiv:1804.09658] [INSPIRE].

[16] T. Shimaji, T. Takayanagi and Z. Wei, Holographic quantum circuits from splitting/joining

local quenches, JHEP 03 (2019) 165 [arXiv:1812.01176] [INSPIRE].

[17] P. Caputa, T. Numasawa, T. Shimaji, T. Takayanagi and Z. Wei, Double local quenches in

2D CFTs and gravitational force, JHEP 09 (2019) 018 [arXiv:1905.08265] [INSPIRE].

[18] M. Mezei and J. Virrueta, Exploring the membrane theory of entanglement dynamics, JHEP

02 (2020) 013 [arXiv:1912.11024] [INSPIRE].

[19] S. Chapman, D. Ge and G. Policastro, Holographic complexity for defects distinguishes

action from volume, JHEP 05 (2019) 049 [arXiv:1811.12549] [INSPIRE].

[20] Y. Sato and K. Watanabe, Does boundary distinguish complexities?, JHEP 11 (2019) 132

[arXiv:1908.11094] [INSPIRE].

[21] P. Braccia, A.L. Cotrone and E. Tonni, Complexity in the presence of a boundary, JHEP 02

(2020) 051 [arXiv:1910.03489] [INSPIRE].

[22] M. Chiodaroli, E. D’Hoker, Y. Guo and M. Gutperle, Exact half-BPS string-junction

solutions in six-dimensional supergravity, JHEP 12 (2011) 086 [arXiv:1107.1722] [INSPIRE].

– 22 –

JHEP04(2021)193

[7] J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, On holographic defect entropy,

JHEP 05 (2014) 084 [arXiv:1403.6475] [INSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[23] M. Chiodaroli, E. D’Hoker and M. Gutperle, Holographic duals of boundary CFTs, JHEP 07

(2012) 177 [arXiv:1205.5303] [INSPIRE].

[24] A. Karch and L. Randall, Geometries with mismatched branes, JHEP 09 (2020) 166

[arXiv:2006.10061] [INSPIRE].

[25] C. Bachas, S. Chapman, D. Ge and G. Policastro, Energy reflection and transmission at 2D

holographic interfaces, Phys. Rev. Lett. 125 (2020) 231602 [arXiv:2006.11333] [INSPIRE].

[26] P. Simidzija and M. Van Raamsdonk, Holo-ween, JHEP 12 (2020) 028 [arXiv:2006.13943]

[INSPIRE].

[28] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[29] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[30] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[31] G. Penington, Entanglement wedge reconstruction and the information paradox, JHEP 09

(2020) 002 [arXiv:1905.08255] [INSPIRE].

[32] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields

and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063

[arXiv:1905.08762] [INSPIRE].

[33] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[34] M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information radiation

in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836] [INSPIRE].

[35] A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions,

SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

[36] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum extremal islands

made easy, part I: entanglement on the brane, JHEP 10 (2020) 166 [arXiv:2006.04851]

[INSPIRE].

[37] R. Bousso and E. Wildenhain, Gravity/ensemble duality, Phys. Rev. D 102 (2020) 066005

[arXiv:2006.16289] [INSPIRE].

[38] H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438] [INSPIRE].

[39] I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension two holography for wedges,

Phys. Rev. D 102 (2020) 126007 [arXiv:2007.06800] [INSPIRE].

[40] R.-X. Miao, An exact construction of codimension two holography, JHEP 01 (2021) 150

[arXiv:2009.06263] [INSPIRE].

[41] T. Takayanagi and K. Tamaoka, Gravity edges modes and Hayward term, JHEP 02 (2020)

167 [arXiv:1912.01636] [INSPIRE].

[42] M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography, JHEP

06 (2012) 066 [arXiv:1205.1573] [INSPIRE].

– 23 –

JHEP04(2021)193

[27] H. Ooguri and T. Takayanagi, Cobordism conjecture in AdS, arXiv:2006.13953 [INSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[43] C.-S. Chu, R.-X. Miao and W.-Z. Guo, On new proposal for holographic BCFT, JHEP 04

(2017) 089 [arXiv:1701.07202] [INSPIRE].

[44] A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional

anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

[45] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311

(1988) 46 [INSPIRE].

[46] M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1),

Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

[48] M. Henneaux and S.-J. Rey, Nonlinear W∞ as asymptotic symmetry of three-dimensional

higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

[49] M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin

gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].

[50] J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS3 , JHEP

04 (2014) 089 [arXiv:1306.4347] [INSPIRE].

[51] S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from

CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].

[52] A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean

conformal field theories and flat holography, Phys. Rev. Lett. 114 (2015) 111602

[arXiv:1410.4089] [INSPIRE].

[53] J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and WN

conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].

[54] A. Castro, D.M. Hofman and N. Iqbal, Entanglement entropy in warped conformal field

theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].

[55] B. Chen and J.-Q. Wu, Higher spin entanglement entropy at finite temperature with chemical

potential, JHEP 07 (2016) 049 [arXiv:1604.03644] [INSPIRE].

[56] H. Jiang, W. Song and Q. Wen, Entanglement entropy in flat holography, JHEP 07 (2017)

142 [arXiv:1706.07552] [INSPIRE].

[57] X. Huang, C.-T. Ma and H. Shu, Quantum correction of the Wilson line and entanglement

entropy in the pure AdS3 Einstein gravity theory, Phys. Lett. B 806 (2020) 135515

[arXiv:1911.03841] [INSPIRE].

[58] A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro blocks from Wilson lines and

background-independent operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].

[59] M. Besken, A. Hegde and P. Kraus, Anomalous dimensions from quantum Wilson lines,

arXiv:1702.06640 [INSPIRE].

[60] Y. Hikida and T. Uetoko, Correlators in higher-spin AdS3 holography from Wilson lines with

loop corrections, PTEP 2017 (2017) 113B03 [arXiv:1708.08657] [INSPIRE].

[61] Y. Hikida and T. Uetoko, Conformal blocks from Wilson lines with loop corrections, Phys.

Rev. D 97 (2018) 086014 [arXiv:1801.08549] [INSPIRE].

– 24 –

JHEP04(2021)193

[47] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007

[arXiv:1008.4744] [INSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[62] Y. Hikida and T. Uetoko, Superconformal blocks from Wilson lines with loop corrections,

JHEP 08 (2018) 101 [arXiv:1806.05836] [INSPIRE].

[63] M. Beşken, E. D’Hoker, A. Hegde and P. Kraus, Renormalization of gravitational Wilson

lines, JHEP 06 (2019) 020 [arXiv:1810.00766] [INSPIRE].

[64] M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304]

[INSPIRE].

[65] A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges

and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].

[67] J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS3 , JHEP 01

(2014) 023 [arXiv:1302.0816] [INSPIRE].

[68] P. Kraus and T. Ugajin, An entropy formula for higher spin black holes via conical

singularities, JHEP 05 (2013) 160 [arXiv:1302.1583] [INSPIRE].

[69] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[70] I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical

quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

[71] A. Corichi and I. Rubalcava-García, Energy in first order 2 + 1 gravity, Phys. Rev. D 92

(2015) 044040 [arXiv:1503.03030] [INSPIRE].

[72] M.R. Gaberdiel and R. Gopakumar, An AdS3 dual for minimal model CFTs, Phys. Rev. D

83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

[73] M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP 07 (2012)

127 [arXiv:1205.2472] [INSPIRE].

[74] M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002

[arXiv:1207.6697] [INSPIRE].

[75] A. Castro and E. Llabrés, Unravelling holographic entanglement entropy in higher spin

theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].

[76] M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of

entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

[77] A.C. Wall, Maximin surfaces, and the strong subadditivity of the covariant holographic

entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

– 25 –

JHEP04(2021)193

[66] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like

higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017

[arXiv:1208.1851] [INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る