リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「生鮮果実の防カビコーティング剤としての精油添加キトサン系ナノコンポジットの開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

生鮮果実の防カビコーティング剤としての精油添加キトサン系ナノコンポジットの開発

アタ, アディタヤ, ワルダナ ADITYA WARDANA, ATA 九州大学

2022.09.22

概要

Edible packaging (coatings and films) has been used to improve the shelf life of fresh fruit products. The preparation process of edible packaging depends on the properties of the ingredients and the application end use. The objective of this study were to 1) develop antifungal nanocomposite coating formulated from chitosan (Chi), Indonesia origin essential oil, and nanoparticles; 2) evaluate the functional properties of the coating films. These objectives were achieved by optimizing the raw material dosage selection and blending sequence.

In the first work, the properties of an antifungal coating film made from Chi combined with zinc oxide nanoparticles (ZNPs) and Indonesian sandalwood essential oil (SEO) were investigated. Incorporation of 0.5% SEO or 0.025% ZNPs with 0.5% SEO into 0.8% Chi coating solution showed outstanding inhibitory effects on mycelium growth and spore germination of Penicillium italicum. The antifungal mechanism was explained by measuring the loss of spore membrane integrity. The antifungal effect was also confirmed in vivo by testing on tangerine fruit. The biocompatibility of these coatings was analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and fluorescence microscopy. Significant increases in pH, appearance viscosity, and transparency and a decrease in light transmittance were found with 0.8% Chi plus 0.025% ZNPs and 0.5% SEO compared with the control. Chi films incorporating SEO and ZNPs can be used as an edible film and coating to reduce chemical use.

Further work, a novel formulation of composite coating comprising 0.8% Chi incorporating 0.025% CuO nanoparticles (CuO) and 0.5% Indonesian cedarwood essential oil (CEO) was fabricated by casting method. FTIR, CLSM, and SEM analyses were employed to characterize the biocompatibility of each formulation. In addition, the physico-chemically properties of the composite coatings were characterized. The color (L*), light transmission, zeta potential, and roughness of Chi were significantly (P < 0.05) altered negatively by the presence of CuO or CEO; the color (a*, b*, and ∆E), apparent viscosity, and transparency also changed positively as a consequence of CuO and CEO incorporation. The antifungal features of the pure Chi coating against P. italicum and P. digitatum were improved synergistically by CuO and CEO, confirmed by in vitro and in vivo assays. The composite coatings obtained in this work had potential applications for active primary food packaging, particularly for fresh postharvest commodities.

Finally, a novel composite edible coating film consisting of 0.8% Chi and 0.5% SEO was developed. Cellulose nanofibers (CNFs) were used as a stabilizer agent of oil-in-water Pickering emulsion. We found four typical groups of CNF level-dependent emulsion stabilization, including (1) unstable emulsion in the absence of CNFs; (2) unstable emulsion (0.006–0.21% CNFs); (3) stable emulsion (0.24–0.31% CNFs); and (4) regular emulsion with the addition of surfactant. Confocal laser scanning microscopy was used to characterize the droplet diameters and morphology. Antifungal tests against Botrytis cinerea and P. digitatum, between emulsion coating stabilized with CNFs (Chi/SEOpick) and Chi or Chi/SEO was tested. The effective concentration of CNFs (0.24%) improved the performance of Chi coating and maintain Chi/SEO antifungal activity synergistically confirmed with a series of assays (in vitro, in vivo, and membrane integrity changes). The incorporation of CNFs contributed to improve the functional properties of CS and SEO-loaded Chi including light transmission at UV and visible light wavelengths and tensile strength. AFM and SEM were employed to characterize the biocompatibility of each coating film formulation. Emulsion-CNF stabilized coating had potential applications for active coating for fresh fruit commodities.

参考文献

Chapter1

Basumatary, I. B., Mukherjee, A., Katiyar, V., Kumar, S., & Dutta, J. (2021). Chitosan-based antimicrobial coating for improving postharvest shelf life of pineapple. Coatings, 11(11),1–12.

Braga, P., Alencar, G., Alves, S., Fechine, J., Anderson, W., Paz, M., Câmara, S., Leite, E., & Souza, D. (2019). Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C . brevisporum in papaya (Carica papaya L .) fruit. International Journal of Biological Macromolecules, 139, 631–639.

Burdock, G. A., & Carabin, I. G. (2008). Safety assessment of sandalwood oil (Santalum album L.). Food and Chemical Toxicology, 46(2), 421–432.

Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt, A. (2012). Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. Journal of Food Science, 77(8), 182–187.

El Guilli, M., Hamza, A., Clément, C., Ibriz, M., & Barka, E. A. (2016). Effectiveness of postharvest treatment with chitosan to control citrus green mold. Agriculture (Switzerland), 6(2).

El.shafei, A., & Abou-Okeil, A. (2011). ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydrate Polymers, 83(2), 920–925.

Jeong, H.-U., Kwon, S.-S., Kong, T. Y., Kim, J. H., & Lee, H. S. (2014). Inhibitory Effects of Cedrol, β-Cedrene, and Thujopsene on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. Journal of Toxicology and Environmental Health, Part A, 77(22–24), 1522–1532.

Khalil, H. A., Abdelkader, M. F. M., Lo’ay, A. A., El-Ansary, D. O., Shaaban, F. K. M., Osman, S. O., Shenawy, I. E., Osman, H. E. H., Limam, S. A., Abdein, M. A., & Abdelgawad, Z. A. (2022). The combined effect of hot water treatment and chitosan coating on mango (Mangifera indica L. cv. Kent) fruits to control postharvest deterioration and increase fruit quality. Coatings, 12(1).

Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 51–63.

Lu, Y., Li, J., Ge, L., Xie, W., & Wu, D. (2021). Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydrate Polymers, 255.

Nesic, A. R., & Seslija, S. I. (2017). 19 - The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging (A. M. B. T.-F. P. Grumezescu (ed.); pp. 637–697). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804302-8.00019-4

Okawa, K. (2015). Market and trade impacts of food loss and waste reduction, OECD food, agriculture and fisheries papers, no. 75, OECD Publishing, Paris.

Otoni, C. G., Avena-bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V, Mchugh, T. H., & Mattoso, L. H. C. (2017). Recent advances on edible films based on fruits and vegetables- a review. Comprehensive Reviews in Food Science and Food Safety,16, 1151–1169.

Panebianco, S., Vitale, A., Platania, C., Restuccia, C., Polizzi, G., & Cirvilleri, G. (2014).

Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. Journal of Plant Diseases and Protection, 121(4), 177–183.

Powers, C. N., Osier, J. L., Mcfeeters, R. L., Brazell, C. B., Olsen, E. L., Moriarity, D. M., Satyal, P., & Setzer, W. N. (2018). Antifungal and cytotoxic activities of sixty commercially -available essential oils. Molecules, 23, 1-13.

Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(21), 10–13. Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 75, 24–27.

Saha, A., Tyagi, S., Gupta, R. K., & Tyagi, Y. K. (2017). Natural gums of plant origin as edible coatings for food industry applications. Critical Reviews in Biotechnology, 37(8), 959–973.

Seo, S.-M., Lee, J.-W., Shin, J., Tak, J.-H., Hyun, J., & Park, I.-K. (2021). Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Scientific Reports, 11(1), 1–12.

Shao, X., Cao, B., Xu, F., Xie, S., Yu, D., & Wang, H. (2015). Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99, 37–43.

Zambrano-Zaragoza, M. L., González-Reza, R., Mendoza-Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T. F., Mendoza-Elvira, S., & Quintanar-Guerrero, D. (2018). Nanosystems in edible coatings: A novel strategy for food preservation. International Journal of Molecular Sciences, 19(3).

Zeng, K., Deng, Y., Ming, J., & Deng, L. (2010). Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Scientia Horticulturae, 126(2), 223–228.

Chapter2

Adilah, M. Z. A., Jamilah, B., & Nur Hanani, Z. A. (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 74, 207–218.

Alexandre, E. M. C., Lourenço, R. V., Bittante, A. M. Q. B., Moraes, I. C. F., & Sobral, P. J. do A. (2016). Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10, 87–96.

Avadi, M. R., Jalali, A., Mir Mohammad Sadeghi, A., Shamimi, K., Bayati, K. H., Nahid, E., Dehpour, A. R., & Rafiee-Tehrani, M. (2005). Diethyl methyl chitosan as an intestinal paracellular enhancer: Ex vivo and in vivo studies. International Journal of Pharmaceutics, 293(1–2), 83–89.

Barrera-Ruiz, D. G., Cuestas-Rosas, G. C., Sánchez-Mariñez, R. I., Álvarez-Ainza, M. L., Moreno-Ibarra, G. M., López-Meneses, A. K., Plascencia-Jatomea, M., & Cortez-Rocha, M. O. (2020). Antibacterial activity of essential oils encapsulated in chitosan nanoparticles. Food Science and Technology, 40, 568-573.

Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., Hughes, C., Lasch, P., Martin-Hirsch, P. L., Obinaju, B., Sockalingum, G. D., Sulé-Suso, J., Strong, R. J., Walsh, M. J., Wood, B. R., Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9(8), 1771–1791.

Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26(1), 9–16.

Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17–25.

Burdock, G. A., and Carabin, I. G. (2008). Safety assessment of sandalwood oil (Santalum album L.). Food and Chemical Toxicology, 46(2), 421-432.

Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt, A. (2012). Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. Journal of Food Science, 77(8), 182–187.

Chanakul, A., Traiphol, N., Faisadcha, K., & Traiphol, R. (2014). Dual colorimetric response of polydiacetylene/Zinc oxide nanocomposites to low and high pH. Journal of Colloid and Interface Science, 418, 43–51.

Chen, W., Liu, X., Liu, Y., & Kim, H. Il. (2010). Synthesis of microcapsules with polystyrene/ZnO hybrid shell by pickering emulsion polymerization. Colloid and Polymer Science, 288(14–15), 1393–1399.

Chen, C. Y., Zheng, J. P., Wan, C. P., Chen, M., & Chen, J. Y. (2016). Effect of carboxymethyl cellulose coating enriched with clove oil on postharvest quality of “Xinyu” Mandarin oranges. Fruits, 71(5), 319–327.

Chen, H., Sun, Z., and Yang, H. (2019). Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae, 244, 157–164.

Chen, C., Chen, J., & Wan, C. (2020). Pinocembrin-7-Glucoside (P7G) reduced postharvest blue mold of navel orange by suppressing Penicillium italicum growth. Microorganisms, 8(4).

Colucci, G., Santamaria-Echart, A., Silva, S. C., Fernandes, I. P. M., Sipoli, C. C., & Barreiro, M. F. (2020). Development of water-in-oil emulsions as delivery vehicles and testing with a natural antimicrobial extract. Molecules, 25(9), 5–7.

Dananjaya, S. H. S., Kumar, R. S., Yang, M., Nikapitiya, C., Lee, J., & De Zoysa, M. (2018). Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. International Journal of Biological Macromolecules, 108, 1281–1288.

de Oliveira, C. E. V., Magnani, M., de Sales, C. V., de Souza Pontes, A. L., Campos-Takaki, G. M., Stamford, T. C. M., & de Souza, E. L. (2014). Effects of chitosan from Cunninghamella elegans on virulence of post-harvest pathogenic fungi in table grapes (Vitis labrusca L.). International Journal of Food Microbiology, 171, 54–61.

de Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893.

El Guilli, M., Hamza, A., Clément, C., Ibriz, M., & Barka, E. A. (2016). Effectiveness of postharvest treatment with chitosan to control citrus green mold. Agriculture, 6(12), 1-15.

El Shafei, A., & Abou-Okeil, A. (2011). ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydrate Polymers, 83(2), 920–925.

Escamilla-García, M., Calderón-Domínguez, G., Chanona-Pérez, J. J., Mendoza-Madrigal, A. G., Di Pierro, P., García-Almendárez, B. E., Amaro-Reyes, A., & Regalado-González, C. (2017). Physical, structural, barrier, and antifungal characterization of chitosan-zein edible films with added essential oils. International Journal of Molecular Sciences, 18(11).

He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215.

Inouye, S., Uchida, K., & Abe, S. (2006). Vapor activity of 72 essential oils against a Trichophyton mentagrophytes. Journal of Infection and Chemotherapy, 12(4), 210–216.

Jahed, E., Khaledabad, M. A., Bari, M. R., & Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oilloaded chitosan films. Reactive and Functional Polymers, 117, 70–80.

Jamdagni, P., Khatri, P., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University - Science, 30(2), 168–175.

Jayaraj, J., Rahman, M., Wan, A., & Punja, Z. K. (2009). Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Annals of Applied Biology, 155(1), 71–80.

Ji, D., Chen, T., Ma, D., Liu, J., Xu, Y., & Tian, S. (2018). Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biology and Technology, 142, 46–54.

Jiamprasertboon, A., Dixon, S. C., Sathasivam, S., Powell, M. J., Lu, Y., Siritanon, T., & Carmalt, C.

J. (2019). Low-cost one-step fabrication of highly conductive ZnO:Cl transparent thin films with tunable photocatalytic properties via aerosol-assisted chemical vapor deposition. ACS Applied Electronic Materials, 1(8), 1408–1417.

Jiang, R., Zhu, H., Yao, J., Fu, Y., & Guan, Y. (2012). Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Applied Surface Science, 258(8), 3513–3518.

Kala, S., Sogan, N., Naik, S. N., Agarwal, A., & Kumar, J. (2020). Impregnation of pectincedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Scientific Reports, 10(1), 1–12.

Kim, T. H., Hatano, T., Okamoto, K., Yoshida, T., Kanzaki, H., Arita, M., & Ito, H. (2017). Antifungal and ichthyotoxic sesquiterpenoids from Santalum album heartwood. Molecules, 22(7), 1–8.

Kingwascharapong, P., Arisa, K., Karnjanapratum, S., Tanaka, F., & Tanaka, F. (2020). Effect of gelatin-based coating containing frog skin oil on the quality of persimmon and its characteristics. Scientia Horticulturae, 260, 1-9.

Klangmuang, P. & Sothornvit, R. (2018). Active coating from hydroxypropyl methylcellulose-based nanocomposite incorporated with Thai essential oils on mango (cv. Namdokmai Sithong). Food Bioscience, 23, 9–15.

Kringel, D. H., da Silva, W. M. F., Biduski, B., Waller, S. B., Lim, L. T., Dias, A. R. G., & Zavareze, E. da R. (2020). Free and encapsulated orange essential oil into a β-cyclodextrin inclusion complex and zein to delay fungal spoilage in cakes. Journal of Food Processing and Preservation, 44(5), 1–10.

Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144(1), 51-63.

Kumar, R. S., Dananjaya, S. H. S., De Zoysa, M., & Yang, M. (2016). Enhanced antifungal activity of Ni-doped ZnO nanostructures under dark conditions. RSC Advances, 6(110), 108468–

Li, Y., Liu, H., Liu, Q., Kong, B., & Diao, X. (2019). Effects of zein hydrolysates coupled with sage (salvia officinalis) extract on the emulsifying and oxidative stability of myofibrillar protein prepared oil-in-water emulsions. Food Hydrocolloids, 87, 149–157.

Liu, J., Tian, S., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300–306.

Mitra, S., Patra, P., Chandra, S., Pramanik, P., & Goswami, A. (2012). Efficacy of highly waterdispersed fabricated nano ZnO against clinically isolated bacterial strains. Applied Nanoscience, 2(3), 231–238.

Naeem, A., Abbas, T., Ali, T.M., & Hasnain, A. (2018). Effect of guar gum coatings containing essential oils on shelf life and nutritional quality of green-unripe mangoes during low temperature storage. International Journal of Biological Macromolecules, 113, 403–410.

Nardoni, S., Giovanelli, S., Pistelli, L., Mugnaini, L., Profili, G., Pisseri, F., & Mancianti, F. (2015). In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Natural Product Communications, 10(8), 1473-1478.

Negi, H., Agarwal, T., Zaidi, M. G. H., & Goel, R. (2012). Comparative antibacterial efficacy of metal oxide nanoparticles against Gram negative bacteria. Annals of Microbiology, 62(2), 765–772.

Ni, S., Zhang, H., Dai, H., & Xiao, H. (2018). Starch-based flexible coating for food packaging paper with exceptional hydrophobicity and antimicrobial activity. Polymers, 10(11).

Panebianco, S., Vitale, A., Platania, C., Restuccia, C., Polizzi, G., & Cirvilleri, G. (2014).

Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. Journal of Plant Diseases and Protection, 121(4), 177–183.

Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287–293.

Pérez-Córdoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F., & Sobral, P. J. A. (2018). Physico-chemical, antimicrobial and antioxidant properties of gelatinchitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids, 79, 544–559.

Popat, A., Liu, J., Lu, G. Q. (Max), & Qiao, S. Z. (2012). A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 22(22), 11173–11178.

Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(21), 10–13.

Shao, X., Cao, B., Xu, F., Xie, S., Yu, D., & Wang, H. (2015). Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99, 37–43.

Sotelo-Boyás, M. E., Correa-Pacheco, Z. N., Bautista-Baños, S., & Corona-Rangel, M. L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT - Food Science and Technology, 77, 15–20.

Suzuki, T., Fujikura, K., Higashiyama, T., & Takata, K. (1997). DNA staining for fluorescence and laser confocal microscopy. Journal of Histochemistry and Cytochemistry, 45(1), 49–53.

Tian, X., Ge, X., Guo, M., Ma, J., Meng, Z., & Lu, P. (2021). An antimicrobial bio-based polymer foam from ZnO-stabilised pickering emulsion templated polymerisation. Journal of Materials Science, 56(2), 1643–1657.

Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids, 41, 33–43.

Torres, J. D., Faria, E. A., SouzaDe, J. R., & Prado, A. G. S. (2006). Preparation of photoactive chitosan-niobium (V) oxide composites for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 182(2), 202–206.

Worzakowska, M. (2017). TG/DSC/FTIR/QMS studies on the oxidative decomposition of terpene acrylate homopolymers. Journal of Thermal Analysis and Calorimetry, 127(3), 2025–2035.

Yan, X., He, B., Liu, L., Qu, G., Shi, J., Hu, L., & Jiang, G. (2018). Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 10(4), 557–564.

Yao, Y., Ding, D., Shao, H., Peng, Q., & Huang, Y. (2017). Antibacterial activity and physical properties of fish gelatin-chitosan edible films supplemented with D-limonene. International Journal of Polymer Science, 2017, 1-9.

Zeng, K., Deng, Y., Ming, J., & Deng, L. (2010). Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Scientia Horticulturae, 126(2), 223–228.

Zhang, H., Li, R., & Liu, W. (2011). Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. International Journal of Molecular Sciences, 12(2), 917–934.

Chapter3

Al-kassas, R., Wen, J., Cheng, A. E., Kim, A. M., Sze, S., Liu, M., & Yu, J. (2016). Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydrate Polymers, 153, 176–186.

Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100, 678–687.

Azam, A., Ahmed, A. S., Oves, M., Khan, M., & Memic. A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527-3535.

Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., Hughes, C., Lasch, P., Martin-Hirsch, P. L., Obinaju, B., Sockalingum, G. D., Sulé-Suso, J., Strong, R. J., Walsh, M. J., Wood, B. R., Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9, 1771–1791.

Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26, 9–16.

Braga, P., Alencar, G., Alves, S., Fechine, J., Anderson, W., Paz, M., Câmara, S., Leite, E., & Souza, D. (2019). Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C . brevisporum in papaya ( Carica papaya L .) fruit. International Journal of Biological Macromolecules, 139, 631–639.

Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2011). Influence of concentration , ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate Polymers, 85, 522–528.

Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13, 5156-5186.

Chu, Y., Gao, C., Liu, X., Zhang, N., Xu, T., Feng, X., Yang, Y., Shen, X., & Tang, X. (2020). LWT - Food Science and Technology Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT - Food Science and Technology, 122, 1-8.

Colucci, G., Santamaria-Echart, A., Silva, S. C., Fernandes, I. P. M., Sipoli, C. C., & Barreiro, M. F. (2020). Development of water-in-oil emulsions as delivery vehicles and testing with a natural antimicrobial extract. Molecules, 25, 5–7.

Costa, J. H., Wassano, C. I., Angolini, C. F. F., Scherlach, K., Hertweck, C., & Fill, T. P. (2019). Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Scientific Reports, 9, 18647.

dos Santos, E. P., Nicácio, P. H. M., Barbosa, F. C., da Silva, H. N., Andrade, A. L. S., Fook, M. V. L., Silva, S. M. D. L., & Leite, I. F. (2019). Chitosan / essential oils formulations for potential use as wound dressing:physical and antimicrobial properties. Materials, 12, 1–21.

Du, W., Niu, S., Xu, Y., Xu, Z., & Fan, C. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75, 385–389.

Escamilla-García, M., Calderón-Domínguez, G., Chanona-Pérez, J. J., Mendoza-Madrigal, A. G., Di Pierro, P., García-Almendárez, B. E., Amaro-Reyes, A., & Regalado-González, C. (2017). Physical, structural, barrier, and antifungal characterization of chitosan-zein edible films with added essential oils. International Journal of Molecular Sciences, 18.

FAO. 2016. Citrus fruit Fresh and processed statistical bulletin 2016. Available at http://www.fao.org/economic/est/est-commodities/citrus-fruit/en/ (accessed June 2,20120).

Fidah, A., Salhi, N., Rahouti, M., Kabouchi, B., Ziani, M., Aberchane, M., & Famiri, A. (2016). Natural durability of cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. Maderas. Ciencia y tecnología, 18, 567–576.

Ghorbani, H. R., Alizadeh, V., Mehr, F. P., Jafarpourgolroudbary, H., Erfan, K., & Yenageh, S. S. (2018). Preparation of polyurethane / CuO coating film and the study of antifungal activity. Progress in Organic Coatings, 123, 322–325. Lyn, F. H., & Hanani, Z. A. N. (2020). Effect of lemongrass (cymbopogon citratus) essential oil on the properties of chitosan films for active packaging. Journal of Packaging Technology and Research, 4, 33–44.

Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467–475.

Jahed, E., Khaledabad, M. A., Bari, M. R., & Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oilloaded chitosan films. Reactive and Functional Polymers, 117, 70-80.

Javed, R., Rais, F., Kaleem, M., Jamil, B., Ahmad, M. A., Yu, T., Qureshi, S. W., & Ao, Q. (2021). Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. International Journal of Biological Macromolecules, 167, 1452–1467.

Jeong, H.-U., Kwon, S.-S., Kong, T. Y., Kim, J. H., & Lee, H. S. (2014). Inhibitory effects of cedrol, β-cedrene, and thujopsene on cytochrome P450 enzyme activities in human liver microsomes. Journal of Toxicology and Environmental Health, Part A, 77, 1522–1532.

Kala, S., Sogan, N., Naik, S. N., Agarwal, A., & Kumar, J. (2020). Impregnation of pectincedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Scientific Reports, 10, 1–12.

Kanashiro, A., M., Akiyama, D. Y., Kupper, K. C., & Fill, T. P. (2020). Penicillium italicum: An underexplored postharvest pathogen. Frontiers in Microbiology, 11, 606852.

Khan, R., Inam, M. A., Zam, S. Z., Akram, M., Shin, S., & Yeom, I. T. (2019). Coagulation and dissolution of CuO nanoparticles in the presence of dissolved organic matter under different pH values. Sustainability, 11, 2825.

Kingwascharapong, P., Arisa, K., Karnjanapratum, S., Tanaka, F., & Tanaka, F. (2020). Effect of gelatin-based coating containing frog skin oil on the quality of persimmon and its characteristics. Scientia Horticulturae, 260, 1-9.

Ko, C. K., & Lee, W. G. (2010). Effects of pH variation in aqueous solutions on dissolution of copper oxide. Surface and Interface Analysis, 42, 1128–1130.

Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., & PlascenciaJatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305–315.

Namburu, P. K., Kulkarni, D. P., Misra, D., & Das, D. K. (2007). Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science, 32, 397–402.

Navarro-Cruz, R., Ochoa-velasco, C. E., Caballero-alvarez, F. J., & Lazcano-hern, M. A. (2018). Effect of pH and mexican oregano (Lippia berlandieri Schauer) essential oil added to carboxymethyl cellulose and starch edible films on Listeria monocytogenes and Staphylococcus aureus. Journal of Food Quality. 2018, 1-6.

Naz, S., Gul, A., & Zia, M. (2020). Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnology, 14, 1–13.

Negi, P. S. (2012). Plant extracts for the control of bacterial growth : Efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156, 7–17.

Orchard, A., Vuuren, S. F. Van, & Viljoen, A. M. (2019). Commercial essential oil combinations against topical fungal pathogens. NPC Natural Product Communications, 14, 151–158.

Ortega, F., Giannuzzi, L., Arce, V. B., & García, M. A. (2017). Active composite starch fi lms containing green synthetized silver nanoparticles. Food Hydrocolloids, 70, 152–162.

Papoutsis, K., Mathioudakis, M. M., Hasperué, J. H., & Ziogas, V. (2019). Nonchemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Trends in Food Science & Technology, 86, 479–491.

Panebianco, S., Vitale, A., Platania, C., Restuccia, C., Polizzi, G., & Cirvilleri, G. (2014).

Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. Journal of Plant Diseases and Protection, 121, 177–183.

Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287–293.

Pham, N., Duong, M., Le, M., Hoang, H. A., & Pham, L. (2019). Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici. Comptes Rendus Chimie, 22, 786–793.

Powers, C. N., Osier, J. L., Mcfeeters, R. L., Brazell, C. B., Olsen, E. L., Moriarity, D. M., Satyal, P., & Setzer, W. N. (2018). Antifungal and cytotoxic activities of sixty commercially -available essential oils. Molecules, 23, 1-13. Muñoz-Escobar, A., & Reyes-Lópes, S. Y. (2020). Antifungal susceptibility of Candida species to copper oxide nanoparticles on polycaprolactone fibers (PCL-CuONPs). Plos-One, 15, 1–12.

Shao, X., Cao, B., Xu, F., Xie, S., Yu, D., & Wang, H. (2015). Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99, 37–43.

Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289–296.

Shih, P., Liao, Y., Tseng, Y., Deng, F., & Lin, C. (2019). A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Frontiers in Microbiology, 10, 1–14.

Suzuki, T., Fujikura, K., Higashiyama, T., & Takata, K. (1997). DNA staining for fluorescence and laser confocal microscopy. Journal of Histochemistry and Cytochemistry, 45, 49–53.

Talibi, I., Boubaker, H., Boudyach, E. H., & Aoumar, A. A. B. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology, 117, 1–17.

Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134, 1571– 1579.

Vargas, M., Albors, A., Chiralt, A., & Gonzáles-Martínez, C. (2009). Characterization of chitosan – oleic acid composite films. Food Hydrocolloids, 23, 536–547.

Vejdan, A., Ojagh, S. M., Adeli, A., & Abdollahi, M. (2016). Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT - Food Science and Technology, 71, 88–95.

Yan, X., He, B., Liu, L., Qu, G., Shi, J., Hu, L., & Jiang, G. (2018). Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 10, 557–564.

Yao, Y., Ding, D., Shao, H., Peng, Q., & Huang, Y. (2017). Antibacterial activity and physical properties of fish gelatin-chitosan edible films supplemented with D-Limonene. International Journal of Polymer Science, 2017, 1-9.

Zeng, K., Deng, Y., Ming, J., & Deng, L. (2010). Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Scientia Horticulturae, 126, 223–228.

Zhang, Y. C., Tang, J. Y., Wang, G. L., Zhang, M., & Hu, X. Y. (2006). Facile synthesis of submicron Cu 2 O and CuO crystallites from a solid metallorganic molecular precursor. Journal of Crystal Growth, 294, 278–282.

Chapter4

Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., & Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54(1), 166–173.

Abdul Khalil, H. P. S., Saurabh, C. K., Adnan, A. S., Nurul Fazita, M. R., Syakir, M. I., Davoudpour, Y., Rafatullah, M., Abdullah, C. K., Haafiz, M. K. M., & Dungani, R. (2016). A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers, 150, 216–226.

Aguayo, M. G., Pérez, A. F., Reyes, G., Oviedo, C., Gacitúa, W., Gonzalez, R., & Uyarte, O. (2018). Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the Kraft Pulping process. Polymers, 10(10).

Alhwaige, A. A., Agag, T., Ishida, H., & Qutubuddin, S. (2013). Biobased chitosan/polybenzoxazine cross-linked films: Preparation in aqueous media and synergistic improvements in thermal and mechanical properties. Biomacromolecules, 14(6), 1806–1815.

Antoniou, J., Liu, F., Majeed, H., & Zhong, F. (2015). Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocolloids, 44, 309–319.

Avadi, M. R., Jalali, A., Mir Mohammad Sadeghi, A., Shamimi, K., Bayati, K. H., Nahid, E., Dehpour, A. R., & Rafiee-Tehrani, M. (2005). Diethyl methyl chitosan as an intestinal paracellular enhancer: Ex vivo and in vivo studies. International Journal of Pharmaceutics, 293(1–2), 83–89.

Azizi Samir, M. A. S., Alloin, F., Sanchez, J. Y., & Dufresne, A. (2004). Cellulose nanocrystals reinforced poly(oxyethylene). Polymer, 45(12), 4149–4157.

Bai, L., Huan, S., Xiang, W., & Rojas, O. J. (2018). Pickering emulsions by combining cellulose nanofibrils and nanocrystals: Phase behavior and depletion stabilization. Green Chemistry, 20(7), 1571–1582.

Burdock, G. A., & Carabin, I. G. (2008). Safety assessment of sandalwood oil (Santalum album L.). Food and Chemical Toxicology, 46(2), 421–432.

Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose.

Carbohydrate Polymers, 157, 167–175. Cheng, K. C., Huang, C. F., Wei, Y., & Hsu, S. hui. (2019). Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Materials, 11(1).

Coma, V., Deschamps, A., & Martial-Gros, A. (2003). Bioactive packaging materials from edible chitosan polymer - antimicrobial activity assessment on dairy-related contaminants. Journal of Food Science, 68(9), 2788–2792.

Dantigny, P., Bensoussan, M., Vasseur, V., Lebrihi, A., Buchet, C., Ismaili-Alaoui, M., Devlieghere, F., & Roussos, S. (2006). Standardisation of methods for assessing mould germination: A workshop report. International Journal of Food Microbiology, 108(2), 286–291.

da Silva, A. O, Cortez-Vega, W. R., Prentice, C., & Fonseca, G. G. (2020). Development and characterization of biopolymer films based on bocaiuva (Acromonia aculeata) flour. International Journal of Biological Macromolecules, 155, 1157–1168.

Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2018). Cellulose nanocrystals Pickering emulsion incorporated chitosan coatings for improving storability of postharvest Bartlett pears (Pyrus communis) during long-term cold storage. Food Hydrocolloids, 84, 229–237.

Edwards, I. P., Upchurch, R. A., & Zak, D. R. (2008). Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR. Applied and Environmental Microbiology, 74(11), 3481–3489.

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering C, 33(4), 1819–1841.

Fujisawa, S. (2021). Material design of nanocellulose/polymer composites via Pickering emulsion templating. Polymer Journal, 53(1), 103–109.

Grande-Tovar, C. D., Chaves-Lopez, C., Serio, A., Rossi, C., & Paparella, A. (2018). Chitosan coatings enriched with essential oils: Effects on fungi involve in fruit decay and mechanisms of action. Trends in Food Science and Technology, 78, 61–71.

Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics Sonochemistry, 41, 466–474.

Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H. W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454.

Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56.

Inouye, S., Uchida, K., & Abe, S. (2006). Vapor activity of 72 essential oils against a Trichophyton mentagrophytes. Journal of Infection and Chemotherapy, 12(4), 210–216.

Jayaraj, J., Rahman, M., Wan, A., & Punja, Z. K. (2009). Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Annals of Applied Biology, 155(1), 71–80.

Ji, D., Chen, T., Ma, D., Liu, J., Xu, Y., & Tian, S. (2018). Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biology and Technology, 142(December 2017), 46–54.

Jiang, R., Zhu, H., Yao, J., Fu, Y., & Guan, Y. (2012). Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Applied Surface Science, 258(8), 3513–3518.

Jung, J., Deng, Z., & Zhao, Y. (2020). Mechanisms and performance of cellulose nanocrystals Pickering emulsion chitosan coatings for reducing ethylene production and physiological disorders in postharvest ‘Bartlett’ pears (Pyrus communis L.) during cold storage. Food Chemistry, 309, 125693.

Kafy, A., Kim, H. C., Zhai, L., Kim, J. W., Hai, L. Van, Kang, T. J., & Kim, J. (2017). Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Scientific Reports, 7(1), 1–8.

Kim, T. H., Hatano, T., Okamoto, K., Yoshida, T., Kanzaki, H., Arita, M., & Ito, H. (2017). Antifungal and Ichthyotoxic Sesquiterpenoids from Santalum album Heartwood. Molecules (Basel, Switzerland), 22(7), 1–8.

Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 51–63.

Li, P., Sirviö, J. A., Haapala, A., Khakalo, A., & Liimatainen, H. (2019). Anti-oxidative and UVabsorbing biohybrid film of cellulose nanofibrils and tannin extract. Food Hydrocolloids, 92(December 2018), 208–217.

Li, Z., Wu, H., Yang, M., Xu, D., Chen, J., Feng, H., Lu, Y., Zhang, L., Yu, Y., & Kang, W. (2018). Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Carbohydrate Polymers, 181, 224–233.

Liu, B., Zhu, Y., Tian, J., Guan, T., Li, D., Bao, C., Norde, W., Wen, P., & Li, Y. (2019). Inhibition of oil digestion in Pickering emulsions stabilized by oxidized cellulose nanofibrils for low-calorie food design. RSC Advances, 9(26), 14966–14973.

Liu, J., Tian, S., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300–306.

Lu, Y., Li, J., Ge, L., Xie, W., & Wu, D. (2021). Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydrate Polymers, 255.

Luzi, F., Fortunati, E., Giovanale, G., Mazzaglia, A., Torre, L., & Balestra, G. M. (2017). Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. International Journal of Biological Macromolecules, 104, 43–55.

Lynd, L. R., Weimer, P. J., Zyl, W. H. Van, & Isak, S. (2002). Microbial cellulose utilization : fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.

Ma, W., Tang, C. H., Yin, S. W., Yang, X. Q., Wang, Q., Liu, F., & Wei, Z. H. (2012). Characterization of gelatin-based edible films incorporated with olive oil. Food Research International, 49(1), 572–579.

Maryam Adilah, Z. A., Jamilah, B., & Nur Hanani, Z. A. (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 74, 207–218.

Medina, E., Caro, N., Abugoch, L., Gamboa, A., Díaz-Dosque, M., & Tapia, C. (2019). Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. Journal of Food Engineering, 240, 191–198.

Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2016). Integration between chitosan and Zataria multiflora or Cinnamomum zeylanicum essential oil for controlling Phytophthora drechsleri, the causal agent of cucumber fruit rot. LWT - Food Science and Technology, 65, 349–356.

Nardoni, S., Giovanelli, S., Pistelli, L., Mugnaini, L., Profili, G., Pisseri, F., & Mancianti, F. (2015). In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Natural Product Communications, 10(8), 1473–1478.

Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531–539. Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2013).

Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74–84.

Saxena, A., Elder, T. J., Pan, S., & Ragauskas, A. J. (2009). Novel nanocellulosic xylan composite film. Composites Part B: Engineering, 40(8), 727–730.

Seo, S.-M., Lee, J.-W., Shin, J., Tak, J.-H., Hyun, J., & Park, I.-K. (2021). Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Scientific Reports, 11(1), 1–12.

Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science and Technology, 10(2), 37–51.

Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18–26.

Shao, X., Cao, B., Xu, F., Xie, S., Yu, D., & Wang, H. (2015). Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99, 37–43.

Shi, W. J., Tang, C. H., Yin, S. W., Yin, Y., Yang, X. Q., Wu, L. Y., & Zhao, Z. G. (2016). Development and characterization of novel chitosan emulsion films via pickering emulsions incorporation approach. Food Hydrocolloids, 52, 253–264.

Souza, A. G., Ferreira, R. R., Paula, L. C., Mitra, S. K., & Rosa, D. S. (2021). Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packaging and Shelf Life, 27, 100615.

Torres, J. D., Faria, E. A., SouzaDe, J. R., & Prado, A. G. S. (2006). Preparation of photoactive chitosan-niobium (V) oxide composites for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 182(2), 202–206.

Treseder, K. K., & Lennon, J. T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews, 79(2), 243–262.

Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: Mechanical, barrier and structural properties. LWT - Food Science and Technology, 50(2), 531–537.

Wang, L. J., Yin, Y. C., Yin, S. W., Yang, X. Q., Shi, W. J., Tang, C. H., & Wang, J. M. (2013). Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation. Journal of Agricultural and Food Chemistry, 61(46), 11089–11097.

Wang, X. Y., & Heuzey, M. C. (2016). Chitosan-Based Conventional and Pickering Emulsions with Long-Term Stability. Langmuir, 32(4), 929–936.

Wu, X., Zhang, L., Zhang, X., Zhu, Y., Wu, Y., Li, Y., Li, B., Liu, S., Zhao, J., & Ma, Z. (2017). Ethyl cellulose nanodispersions as stabilizers for oil in water Pickering emulsions. Scientific Reports, 7(1), 1–10.

Xing, Y., Xu, Q., Yang, S. X., Chen, C., Tang, Y., Sun, S., Zhang, L., Che, Z., & Li, X. (2016). Preservation mechanism of chitosan-based coating with cinnamon oil for fruits storage based on sensor data. Sensors, 16(7).

Xu, Y., Chu, Y., Feng, X., Gao, C., Wu, D., Cheng, W., Meng, L., Zhang, Y., & Tang, X. (2020). Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. International Journal of Biological Macromolecules, 156, 111–119.

Yao, Y., Ding, D., Shao, H., Peng, Q., & Huang, Y. (2017). Antibacterial activity and physical properties of fish gelatin-chitosan edible films supplemented with D-Limonene. International Journal of Polymer Science, 2017.

Yekta, R., Mirmoghtadaie, L., Hosseini, H., Norouzbeigi, S., Hosseini, S. M., & ShojaeeAliabadi, S. (2020). Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. International Journal of Biological Macromolecules, 158, 327–337.

Yeng, C. M., Husseinsyah, S., & Ting, S. S. (2013). Chitosan/corn cob biocomposite films by cross-linking with glutaraldehyde. BioResources, 8(2), 2910–2923.

Yuan, G., Chen, X., & Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International, 89, 117–128.

Zhang, H., Li, R., & Liu, W. (2011). Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. International Journal of Molecular Sciences, 12(2), 917–934.

Zhang, W., Zhang, Y., Cao, J., & Jiang, W. (2021). Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules, 166, 288–296.

Zou, T., Sipponen, M. H., & Österberg, M. (2019). Natural shape-retaining microcapsules with shells made of chitosan-coated colloidal lignin particles. Frontiers in Chemistry, 7, 1–12.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る