リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhancement of antitumor immune response by radiation therapy combined with dual immune checkpoint inhibitor in a metastatic model of HER2-positive murine tumor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhancement of antitumor immune response by radiation therapy combined with dual immune checkpoint inhibitor in a metastatic model of HER2-positive murine tumor

MISAKI Sayaka 0000-0002-4273-8869 MURATA Satoshi 90239525 SHIMOJI Miyuki IWAI Takayasu SIHOMBING Andreas Michael AOKI Ken TAKAHASHI Yutaka WATANABE Yoshiyuki 20362733 0000-0003-3906-3730 滋賀医科大学

2022.06.28

概要

Purpose:
Treatments for metastatic human epidermal growth factor receptor 2 (HER2)-positive tumors are improving but remain inadequate. We investigated activating antitumor immune response by combining radiation therapy with immune checkpoint inhibitors using mouse tumors overexpressing HER2, a pivotal driver oncogenic antigen, to develop new immunotherapies for metastatic HER2-positive tumors.

Materials and methods:
NT2.5 cells were inoculated into the two mammary fat pads of FVB/N mice, which were divided into four groups: no treatment (Non), anti-PD-1 and anti-CTLA4 antibodies (P1C4), irradiation of the large tumor (Rad), and combination (R + P1C4) groups. Tumor growth, immunostaining of tumor-infiltrating lymphocytes, and the proportion of HER2-tumor antigen-specific CD8-positive T cells in the spleen and tumor-infiltrating lymphocytes were analyzed.

Results:
In the Rad group, unirradiated and irradiated tumors shrank after treatment. Besides the directly irradiated tumors, the unirradiated tumors in the R + P1C4 group shrank the most. In the unirradiated tumors, CD8-positive T cells and FOXP3-positive T cells accumulated significantly more in the R + P1C4 group than in the P1C4 and the Rad groups (all p < 0.001). CD4-positive helper T cells accumulated significantly more in the R + P1C4 group than in the Rad group (p < 0.05), but this was not significantly different from the P1C4 group. HER2-specific CD8-positive T cells in the spleen and tumor-infiltrating lymphocytes were significantly increased in the R + P1C4 group compared to the P1C4 and Rad groups (all p < 0.0001).

Conclusion:
Irradiation of HER2-positive tumors induced an antitumor immune effect against the unirradiated tumor, which was enhanced by the combined use of immune checkpoint inhibitors and was mediated by enhanced recruitment of HER2-tumor antigen-specific cytotoxic T lymphocytes at the tumor site in an HER2-positive mouse tumor model. Harnessing the distant antitumor immune response induced by the combination of radiation therapy and immune checkpoint inhibitors could be a promising treatment strategy for metastatic HER2-positive tumors.

この論文で使われている画像

参考文献

1. Campian JL, Ye X, Brock M, Grossman SA. Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer. Cancer Investig. 2013;31:183–8. https://doi.org/10.3109/07357 907.2013.767342.

2. Stone HB, Peters LJ, Milas L. Efect of host immune capability on radiocurability and subsequent transplantability of a murine fbrosarcoma. J Natl Cancer Inst. 1979;63:1229–35.

3. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specifc efector cells that trafc to the tumor. J Immunol. 2005;174:7516–23. https://doi.org/10. 4049/jimmunol.174.12.7516.

4. Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, et al. Local radiation therapy inhibits tumor growth through the generation of tumor-specifc CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010;70:2697–706. https://doi. org/10.1158/0008-5472.CAN-09-2982.

5. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal efect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70. https://doi.org/10.1016/j.ijrobp.2003.09. 012.

6. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11:728–34.

7. Janopaul-Naylor JR, Shen Y, Qian DC, Buchwald ZS. The abscopal efect: a review of pre-clinical and clinical advances. Int J Mol Sci. 2021;22(20):11061. https://doi.org/10.3390/ijms222011061.

8. Tzahar E, Yarden Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim Biophys Acta. 1998;1377:M25-37. https://doi.org/10. 1016/s0304-419x(97)00032-2.

9. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplifcation of the HER-2/neu oncogene. Science. 1987;235:177–82. https://doi.org/10.1126/science.3798106.

10. Wolpoe ME, Lutz ER, Ercolini AM, Murata S, Ivie SE, Garrett ES, et al. HER-2/neu-specifc monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colonystimulating factor secreting whole cell vaccination to augment CD8+ T cell efector function and tumor-free survival in Her-2/ neu-transgenic mice. J Immunol. 2003;171:2161–9. https://doi. org/10.4049/jimmunol.171.4.2161.

11. Gray R, Bradley R, Braybrooke J, Clarke M, Collins R, Dodwell D. Trastuzumab for early-stage, HER2-positive breast cancer: a meta-analysis of 13 864 women in seven randomised trials. Lancet Oncol. 2021;22:1139–50. https://doi.org/10.1016/S1470-2045(21) 00288-6.

12. Ercolini AM, Machiels JP, Chen YC, Slansky JE, Giedlen M, Reilly RT, et al. Identifcation and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J Immunol. 2003;170:4273–80. https://doi.org/10.4049/jimmunol. 170.8.4273.

13. Pham Minh N, Murata S, Kitamura N, Ueki T, Kojima M, Miyake T, et al. In vivo antitumor function of tumor antigen-specifc CTLs generated in the presence of OX40 co-stimulation in vitro. Int J Cancer. 2018;142:2335–43. https://doi.org/10.1002/ijc.31244.

14. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

15. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal efect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379–88. https://doi.org/10.1158/1078-0432.CCR-09-0265.

16. Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015;16:e498- 509. https://doi.org/10.1016/S1470-2045(15)00007-8.

17. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7. https://doi.org/10.1038/nature14292.

18. Janjigian YY, Maron SB, Chatila WK, Millang B, Chavan SS, Alterman C, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020;21:821–31. https://doi.org/10.1016/S1470-2045(20) 30169-8.

19. Huober J, Barrios CH, Niikura N, Jarzab M, Chang Y-C, HugginsPuhalla SL, et al. VP6-2021: IMpassion050: A phase III study of neoadjuvant atezolizumab + pertuzumab + trastuzumab + chemotherapy (neoadj A + PH + CT) in high-risk, HER2-positive early breast cancer (EBC). Ann Oncol. 2021;32:1061–2. https://doi.org/ 10.1016/j.annonc.2021.05.800.

20. McArthur H, Beal K, Halpenny D, Henrich M, Modi S, Patil S, et al. CTLA4 blockade with HER2-directed therapy (H) yields clinical beneft in women undergoing radiation therapy (RT) for HER2-positive (HER2+) breast cancer brain metastases (BCBM). Cancer Res. 2017;77:4705:abstract 4705:. https://doi.org/10.1158/ 1538-7445.AM2017-4705

21. Chen DS, Mellman I. Oncology meets immunology: the cancerimmunity cycle. Immunity. 2013;39:1–10. https://doi.org/10. 1016/j.immuni.2013.07.012.

22. Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, et al. Lymphocyte infltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28:859–64. https://doi. org/10.1016/0959-8049(92)90134-n.

23. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, et al. Association between CD8+ T-cell infltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25:1536–43. https://doi.org/10.1093/annonc/mdu191.

24. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8+ lymphocyte infltration in an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14:R48. https://doi.org/10.1186/bcr3148.

25. Miyashita M, Sasano H, Tamaki K, Chan M, Hirakawa H, Suzuki A, et al. Tumor-infltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat. 2014;148:525–34. https://doi.org/10.1007/ s10549-014-3197-y.

26. Peng GL, Li L, Guo YW, Yu P, Yin XJ, Wang S, Liu CP. CD8+ cytotoxic and FoxP3+ regulatory T lymphocytes serve as prognostic factors in breast cancer. Am J Transl Res. 2019;11:5039–53.

27. Kim PS, Armstrong TD, Song H, Wolpoe ME, Weiss V, Manning EA, et al. Antibody association with HER-2/neu-targeted vaccine enhances CD8 T cell responses in mice through Fc-mediated activation of DCs. J Clin Invest. 2008;118:1700–11. https://doi.org/ 10.1172/JCI34333.

28. Murata S, Ladle BH, Kim PS, Lutz ER, Wolpoe ME, Ivie SE, et al. OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8+ T cell tolerance to an endogenous tumor antigen. J Immunol. 2006;176:974–83. https:// doi.org/10.4049/jimmunol.176.2.974.

29. Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, Jafee EM, et al. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer. 2009;125(3):630–8. https://doi.org/10.1002/ijc.24435.

30. Young KH, Baird JR, Savage T, Cottam B, Friedman D, Bambina S, et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE. 2016;11: e0157164. https://doi.org/10.1371/journal.pone.01571 64.

31. Yokouchi H, Yamazaki K, Chamoto K, Kikuchi E, Shinagawa N, Oizumi S, et al. Anti-OX40 monoclonal antibody therapy in combination with radiotherapy results in therapeutic antitumor immunity to murine lung cancer. Cancer Sci. 2008;99:361–7. https://doi.org/10.1111/j.1349-7006.2007.00664.x.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る