リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Myocardial Strain Derived from ^<13>N-ammonia Positron Emission Tomography: Detection of Ischemia-Related Wall Motion Abnormality」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Myocardial Strain Derived from ^<13>N-ammonia Positron Emission Tomography: Detection of Ischemia-Related Wall Motion Abnormality

Nagao, Michinobu 長尾, 充展 ナガオ, ミチノブ Kawakubo, Masateru 河窪, 正照 カワクボ, マサテル Yamamoto, Atsushi 山本, 篤志 ヤマモト, アツシ Nakao, Risako ナカオ, リサコ Matsuo, Yuka マツオ, ユウカ Fukushima, Kenji 福島, 賢慈 フクシマ, ケンジ Sakai, Akiko サカイ, アキコ Momose, Mitsuru モモセ, ミツル Sakai, Shuji 坂井, 修二 サカイ, シュウジ 九州大学

2023.10

概要

Background: Due to the limitation of spatial resolution, cardiac nuclear medicine images have not been applied to feature-tracking method to automatic extraction of myocardial contours. We have succes

この論文で使われている画像

参考文献

1. Germano G, Erel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and quantitative regional

function from gated thallium-201 perfusion SPECT. J Nucl Med. 1997; 38: 749-54.

2. Nakao R, Nagao M, Yamamoto A, et al. Papillary muscle ischemia on high-resolution cine imaging of

nitrogen-13 ammonia positron emission tomography: Association with myocardial flow reserve and

prognosis in coronary artery disease. J Nucl Cardiol 2020; doi:10.1007/s12350-020-02231-z.

3. Ishizaki U, Nagao M, Shiina Y, Inai K, Mori H, Takahashi T, et al. Global strain and dyssynchrony of

the single ventricle predict adverse cardiac events after the Fontan procedure: Analysis using featuretracking cine magnetic resonance imaging. J Cardiol 2019;73:163-70.

4. Kawakubo M, Nagao M, Yamamoto A, et al. 13N-ammonia positron emission tomography-derived

endocardial strain for the assessment of ischemia using feature-tracking in high-resolution cine imaging.

J Nucl Cardiol. 2021; doi: 10.1007/s12350-021-02677-9.

5. Cerqueira MD, Weissman, NJ, Dilsizian V, et al. Standardized myocardial segmentation and

nomenclature for tomographic imaging of the heart. J Cardiovasc Magn Reson 2002; 4: 203-10.

6. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic

value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll

Cardiol 2006; 48: 1029-39.

7. Yamasaki Y, Abe K, Kamitani T, et al. Balloon pulmonary angioplasty improves right atrial reservoir

and conduit functions in chronic thromboembolic pulmonary hypertension. Eur Heart J Cardiovasc

Imaging 2020; 21: 855-62.

8. Kido T, Nagao M, Kido T, et al. Stress/rest circumferential strain in non-ischemia, ischemia, and

infarction: Quantification by 3 tesla tagged magnetic resonance imaging. Circ J 2013; 77: 1235-41.

9. Kawakubo M, Nagao M, Kikuchi N, et al. 13N-ammonia positron emission tomography-derived leftventricular strain in patients after heart transplantation validated using cardiovascular magnetic

resonance feature tracking as reference. Ann Nucl Med 2022; 36: 70-81.

10. Kawakubo M, Nagao M, Yamamoto A, et al. 13N-ammonia PET-derived right ventricular longitudinal

11

strain and myocardial flow reserve in right coronary artery disease. Eur J Nucl Med Mol Imaging 2022;

49: 1870-1880.

12

FIGURE LEGENDS

Fig. 1 Strain analysis using feature-tracking method

A: First, five to seven points are set manually at the end of diastolic frame, including the start and end points

of the region (upper row). The endocardial contour connecting the points is then automatically drawn (lower

row). The left is horizontal long axis image and the right is vertical long axis image. Yellow is right coronary

artery (RCA) territory, blue is left anterior descending artery (LAD) territory, and pink is left circumflex

artery (LCX) territory.

B: Feature-tracking method consists of a local template-matching technique and spline interpolation of

points tracking. The elongation and contraction of the endocardial contours are automatically extracted

throughout the cardiac cycle.

C: The graph shows normalized a time-strain curve for each region. The largest absolute value (red arrow)

on the strain curve was defined as longitudinal strain (LS) and was used as the representative value of the

patient.

Fig. 2 Comparison of longitudinal strain (LS) and longitudinal strain ratio (LSR) between ischemia

and non-ischemia and between stress and rest conditions.

A: RCA territory

In the ischemia, stress LS was significantly smaller than rest LS. In the non-ischemia, there was no

significant difference between stress LS and rest LS. Stress LS was significantly smaller in ischemia than

in non-ischemia (left). LSR was significantly lower for ischemia than non-ischemia (right). *: p<0.05, **:

p<0.01

B: LAD territory

In the ischemia, stress LS was significantly smaller than rest LS. In the non-ischemia, there was no

significant difference between stress LS and rest LS. Stress LS was smaller in ischemia than in nonischemia, but there was no significant difference between them (left). LSR was significantly lower for

ischemia than non-ischemia (right). *: p<0.05, **: p<0.01

13

C: LCX territory

In the ischemia, stress LS was significantly smaller than rest LS. In the non-ischemia, there was no

significant difference between stress LS and rest LS. Stress LS was smaller in ischemia than in nonischemia, but there was no significant difference between them (left). LSR was significantly lower for

ischemia than non-ischemia (right). *: p<0.05, **: p<0.01

Fig. 3 Diagnostic performance of longitudinal strain (LS) and longitudinal strain ratio (LSR) for

myocardial ischemia

In the RCA and LAD territories, the ischemia diagnostic performance of LSR was superior to that of stress

LS and rest LS. The AUC of LSR in the RCA and LAD territories showed good diagnostic performance of

more than 0.8. On the other hand, the AUC of LSR in the LCS territory was low as 0.69 and comparable to

that of stress LS.

Fig. 4 13N-ammonia PET of a man in his 80s

Gray-scale high-resolution cine images (left and center) show a defect in the mid-anterior wall and

hypointensity in the inferior wall during adenosine-stress, with normal accumulation at rest. Perfusion maps

(right) show transient ischemia in the mid-anterior wall and inferior wall. Longitudinal strain (LS) in the

RCA territory is 31% under stress and 28% at rest, LS in the LAD territory is 19% under stress and 22% at

rest, and LS in the LCX territory is 20% under stress and 28% at rest. In the LAD and LCX territories, LS

is decreasing predominantly under adenosine-stress.

14

Fig. 1A

Fig. 1B

Fig. 1C

Fig. 2A

Regional Longitudinal Strain (%)

Ischemia

Non-Ischemia

Rest

Ischemia

Non-Ischemia

Regional LSR (%)

Stress

Ischemia

Non-Ischemia

LSR=longitudinal strain ratio

Fig. 2B

Regional Longitudinal Strain (%)

Ischemia

Non-Ischemia

Rest

Ischemia

Non-Ischemia

Regional LSR (%)

Stress

Ischemia

Non-Ischemia

LSR=longitudinal strain ratio

Fig. 2C

Regional Longitudinal Strain (%)

Ischemia

Non-Ischemia

Rest

Ischemia

Non-Ischemia

Regional LSR (%)

Stress

Non-Ischemia

Ischemia

LSR=longitudinal strain ratio

Fig. 3

LSR

Stress LS

Resting LS

Cut-off

AUC

LSR

0.78

0.82

Stress

-9.2%

Rest

-51.8%

1-specificity

LCX

LSR

Stress LS

Resting LS

Cut-off

AUC

LSR

0.89

0.86

0.65

Stress

-9.1%

0.52

Rest

-31.7%

1-specificity

Sensitivity

LAD

Sensitivity

Sensitivity

RCA

LSR

Stress LS

Resting LS

Cut-off

AUC

LSR

0.82

0.69

0.62

Stress

-7.1%

0.64

0.61

Rest

-10.3%

0.52

1-specificity

LSR=longitudinal strain ratio

LS=longitudinal strain

Fig. 4

Stress

Rest

Table 1. Patient Characteristics

Number of patients

95

Age (years)

68±11

Male/Female

62/33

Cardiovascular risk factors

Hypertension

69 (73%

Dyslipidemia

68 (72%)

Diabetes mellitus

44 (46%)

Past or current smoking

42 (44%)

Familiry history of CAD

22 (23%)

Clinical history of CAD

Myocardial infaction

14 (15%)

Percutaneous coronary intervension

21 (22%)

Coronary artery bypass grafting

CAD = coronary artery disease

8 (8%)

Table 2

Intra-observer reproducibility

Parameter

Inter-observer reproducibility

Bias

(LOA)

SDD

ICC

(95%CI)

Bias

(LOA)

SDD

ICC

(95%CI)

0.5

(-3.0 to 4.1)

1.8

0.98

(0.98 to 0.99)

2.4

(-1.9 to 6.7)

2.2

0.97

(0.97 to 0.98)

0.7

1.00

1.0

0.99

(0.99 to 1.00)

1.3

(-2.2 to 4.7)

1.6

(-2.0 to 5.2)

Stress LS

RCA

LAD

LCX

0.1

(-1.2 to 1.4)

-0.1

(-2.0 to 1.8)

1.8

1.8

0.98

(0.97 to 0.98)

0.98

(0.97 to 0.98)

Rest LS

RCA

-0.1

(-2.0 to 1.8)

1.0

0.99

(0.99 to 1.00)

1.6

(-2.0 to 5.2)

1.8

0.98

(0.97 to 0.98)

LAD

0.0

(-1.7 to 1.7)

0.9

0.99

(0.99 to 1.00)

0.9

(-2.5 to 4.3)

1.7

0.98

(0.97 to 0.98)

LCX

-0.1

(-2.0 to 1.8)

1.0

0.99

(0.99 to 1.00)

1.6

(-2.0 to 5.2)

1.8

0.98

(0.97 to 0.98)

LS=longitudinal strain, LOA=limit of agreement, SDD=standard deviation of difference,

ICC=intraclass correlation coefficient, CI=coefficient interval

...

参考文献をもっと見る