リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Brassica rapa種の開花時期の遺伝的制御」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Brassica rapa種の開花時期の遺伝的制御

AYASHA AKTER 神戸大学

2020.09.25

概要

Brassica is an important genus in the family of Brassicaceae which includes oilseeds, condiments and vegetables. Brassica species undergoes a whole genome triplication event compared with the model plant Arabidopsis thaliana that plays an important role in the speciation and wide morphotype diversification of Brassica. Diploid species such as Brassica rapa and Brassica oleracea have three copies of genes orthologous to each A. thaliana gene, though deletion in one or two of the three homologs has occurred in some genes after the whole genome triplication. The floral transition is one of the crucial events in plant's life history; flowering time is an important agricultural trait. Flowering time is also important for the yield of crops or vegetables, and the regulation of flowering time is an important goal of plant breeding. There is a wide variation in flowering time within species of the genus Brassica, and this variation is largely dependent on a difference of vernalization requirements. Vernalization is exposure to prolonged cold that alters gene expression and accelerates a transition from the vegetative to reproductive phase. Premature flowering induced by continuous low temperature critically decreases the yield and quality of the harvested product. Therefore, high bolting resistance is an important breeding trait, and understanding the molecular mechanism of vernalization is necessary to achieve this goal. In A. thaliana a relative of B. rapa, two genes, FRIG1DA (FRT) and FLOWERING LOCUS C (FLC) are important in regulating flowering time. The vernalization response including the repression of FLC expression by cold treatment is similar to A. thaliana. B. rapa and B. oleracea each have four homologs of FLC, and the allotetraploid species, Brassica napus, has nine homologs. The increased number of homologs makes their role in vernalization more complicated; among homologs in an individual plant, there are variations in the transcriptional levels of FLC before and after vernalization, in addition to variation of FLC levels between lines. During my study, I demonstrated that BrFR1b functions as an activator of BrFLC which repress flowering in B. rapa. I also confirmed that BrFLC1, BrFLC2, and BrFLC3 act as floral repressors by producing transgenic plants overexpressing each FLC gene and finding a delay in flowering. I showed a positive correlation between the steady state expression levels of the sum of the BrFLC paralogs and the days to flowering after four weeks of cold treatment, suggesting that this is an indicator of the vernalization requirement. As histone modifications can be important for controlling expression levels of genes, I compared the level of the repressive histone mark H3K27me3 between lines, between tissues, or between before and after vernalization by chromatin immunoprecipitation sequencing (ChIP-seq) at whole genome levels in B. rapa. About 90% of the same genes had H3K27me 3 in the two B. rapa lines examined, while there is greater variation between different tissues, indicating that H3K27me3 distribution is conserved between lines but differs between tissues within a line. I also confirmed that genes having H3K27me3 marks showed lower expression levels and tissue -specific expression .1 examined H3K27me 3 states in non-vernalized, vernalized, and after return to warm condition following vernalization, and most of the gene had H3K27me3 levels unchanged by cold treatment. Furthermore, I identified that increased H3K27me3 following vernalization included four BrFLC genes where H3K27me3 was enriched around the transcription start sites. Following return to normal temperature growth conditions, H3K27me3 spread along all four BrFLC paralogs providing stable repression of the gene. This is the important information about H3K27me 3 states at whole genome level and H3K27me3 states after vernalization in B. rapa, suggests that a PHD-PRC2 complex that contains the enzyme responsible for the histone H3K27me3 is recruited to the gene regions of the BrFLCs, which induces stable epigenetic repression .1 also performed ChIP-seq experiments showed that a few genes showed spreading of H3K27me 3 like in the case in BrFLCs, suggesting that this epigenetic change in vernalization is specific to only a few genes including four BrFLC genes. I also observed the differential gene expression pattern during vernalization in B. rapa. I did the transcriptome analysis with different durations of vernalization treatments in B. rapa and found most genes were downregulated following cold treatment. BrFLC expression decreased and expression of genes known to transmit the vernalization state BrVIN3 and BrSOC1 were induced during cold treatment. During cold treatment, some flowering pathway genes showed different expression patterns between paralogs and some genes whose orthologous genes in A. thaliana were unchanged showed change of expression in B. rapa. I suggested that Chinese cabbage’s flowering pathway is different and more complex than in A. thaliana. These outcomes provide significant insights into the genetic control of bolting and flowering that occurred during the vernalization in B. rapa.

この論文で使われている画像

参考文献

Aikawa, S., M. J. Kobayashi, A. Satake, K. K. Shimizu and H. Kudoh. 2010. Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc. Natl. Acad. Sci. U. S. A. 107: 11632-11637.

Akter, A., S. Takahashi, W. Deng, D. J. Shea, E. Itabashi, M. Shimizu, N. Miyaji, K. Osabe, N. Nishida, Y. Suzuki, C. A. Helliwell, M. Seki, W. J. Peacock, E. S. Dennis and R. Fujimoto. 2019. The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L.. DNA Res. 26: 433- 443.

Alvarez-Buylla, E. R., S. J. Liljegren, S. Pelaz, S. E. Gold, C. Burgeff, G. S. Ditta, F. Vergara- Silva and M. F. Yanofsky. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cell, roots and trichomes. Plant J. 24: 1-11.

Andrés, F. and G. Coupland. 2012. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13: 627-639.

Angel, A., J. Song, C. Dean and M. Howard. 2011. A polycomb-based switch underlying quantitative epigenetic memory. Nature 476: 105-108.

Ansorge, W. J. 2009. Next-generation DNA sequencing techniques. N. Biotechnol. 25: 195- 203.

Bastow, R., J. S. Mylne, C. Lister, Z. Lippman, R. A. Martienssen and C. Dean. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427: 164-167.

Berke, L. and B. Snel. 2014. The histone modification H3K27me3 is retained after gene duplication and correlates with conserved noncoding sequences in Arabidopsis. Genome Biol. Evol. 6: 572-579.

Berke, L., G. F. Sanchez-Perez, and B. Snel. 2012. Contribution of the epigenetic mark H3K27me3 to functional divergence after whole genome duplication in Arabidopsis. Genome Biol. 13: R94.

Birve, A., A. K. Sengupta, D. Beuchle, J. Larsson, J. A. Kennison, Å. Rasmuson-Lestander and J. Müller. 2001. Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128: 3371-3379.

Bloomer, R. H. and C. Dean. 2017. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. J. Exp. Bot. 68: 5439-5452.

Bouyer, D., F. Roudier, M. Heese, E.D. Andersen, D. Gey, M.K. Nowack, J. Goodrich, J.P. Renou, P.E. Grini, V. Colot and A. Schnittger .2011. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 7: e1002014.

Buzas, D. M., M. Robertson, E. J. Finnegan, and C. A. Helliwell. 2011. Transcription- dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC. Plant J. 65: 872-881.

Chen, X. and D. X. Zhou. 2013. Rice epigenomics and epigenetics: challenges and opportunities. Curr. Opin. Plant Biol. 16: 164-169.

Cheng, F., J. Wu and X. Wang. 2014. Genome triplication drove the diversification of Brassica plants. Hort. Res. 1: 14024.

Cheng, F., J. Wu, L. Fang, S. Sun, B. Liu, K. Lin, G. Bonnema and X. Wang. 2012. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 7: e36442.

Chin, K., T. A. DeFalco, W. Moeder and K. Yoshioka. 2013. The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol. 163: 611-624.

Choi, K., J. Kim, H.J. Hwang, S.Y. Kim, C. Park, S.Y. Kim and I. Lee. 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell. 23: 289-303.

Chouard, P. 1960. Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. 11: 191-238.

Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.

Corbesier, L. and G. Coupland. 2005. Photoperiodic flowering of Arabidopsis: Integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ. 28: 54-66.

Coustham, V, P. Li, A. Strange, C. Lister, J. Song and C. Dean. 2012. Quantitative modulation of Polycomb silencing underlies natural variation in vernalization. Science 337: 584-587.

De, Lucia, F., P. Crevillen, A. M. Jones, T. Greb and C. Dean. 2008. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. U.S.A. 105: 16831-16836.

Deng, W., H. Ying, C. A. Helliwell, J. M. Taylor, W. J. Peacock and E. S. Dennis. 2011. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108: 6680-6685.

Deng, W., D. M. Buzas, H. Ying, M. Robertson, J. Taylor, W. J. Peacock, E. S. Dennis and C. Helliwell. 2013. Arabidopsis polycomb repressive complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics, 14: 593.

Dennis, E. S. and W. J. Peacock. 2007. Epigenetic regulation of flowering. Curr. Opin. Plant Biol. 10: 520-527.

Diaz, A., K. Park, D. A. Lim and J. S. Song. 2012. Normalization, bias correction, and peak calling for ChIP-seq. Stat. Appl. Genet. Mol. Biol. 11: Article 9.

Du, Z., X. Zhou, Y. Ling, Z. Zhang and Z. Su. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38: W64-W70.

Falik, O., I. Hoffmann and A. Novoplansky. 2014. Say it with flowers: Flowering acceleration by root communication. Plant Signal. Behav. 9: e28258.

Finnegan, E. J. and E. S. Dennis. 2007. Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr. Biol. 17: 1978- 1983.

Friend, D. J. C. 1985. Brassica. Harlevy AH, editor. Handbook of Flowering. CRC Press. pp. 44-77.

Fuchs, J., D. Demidov, A. Houben and I. Schubert. 2006. Chromosomal histone modification patterns-from conservation to diversity. Trends Plant Sci. 11: 199-208.

Fujimoto, R., T. Sasaki, R. Ishikawa, K. Osabe, T. Kawanabe and E.S. Dennis. 2012. Molecular mechanisms of epigenetic variation in plants. Int. J. Mol. Sci. 13: 9900-9922.

Fujimoto, R., J. M. Taylor, S. Shirasawa, W. J. Peacock and E. S. Dennis. 2012. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc. Natl. Acad. Sci. U.S.A. 109: 7109-7114.

Fujimoto, R., T. Sasaki and T. Nishio. 2006. Characterization of DNA methyltransferase genes in Brassica rapa. Genes Genet. Syst. 81: 235-242.

Fujimoto, R., T. Sasaki, R. Ishikawa, K. Osabe, T. Kawanabe and E. S. Dennis. 2012. Molecular mechanisms of epigenetic variation in plants. Int. J. Mol. Sci. 13: 9900-9922.

Gazzani, S., A. R. Gendall, C. Lister, and C. Dean. 2003. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 132: 1107-1114.

Gendall, A. R., Y. Y. Levy, A. Wilson and C. Dean. 2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107: 525-535.

Greb, T., J. S. Mylne, P. Crevillen, N. Geraldo, H. An, A. R. Gendall and C. Dean. 2007. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr. Biol. 17: 73-78.

Groszmann, M., I. K. Greaves, N. Albert, R. Fujimoto, C. A. Helliwell, E.S. Dennis and W. J. Peacock. 2011. Epigenetics in plants-vernalisation and hybrid vigour. Biochim. Biophy. Acta. 1809: 427-437.

Gu, X., C. Le, Y. Wang, Z. Li, D. Jiang, Y. Wang and Y. He. 2013. Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nat. Commun. 4: 1947.

He, G., X. Zhu, A. A. Elling, L. Chen, X. Wang, L. Guo, M. Liang, H. He, H. Zhang, F. Chen and Y. Qi. 2010. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22: 17-33.

He, Y. and R. M. Amasino. 2005. Role of chromatin modification in flowering-time control. Trends Plant Sci. 10: 30–35.

Helliwell, C.A., C.C. Wood, M. Robertson, W.J. Peacock and E.S. Dennis. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46: 183-192.

Helliwell, C.A., R. S. Anderssen, M. Robertson, and E. J. Finnegan. 2015. How is FLC repression initiated by cold ? Trends Plant Sci. 20: 76-82.

Henderson, I. R. and C. Dean. 2004. Control of Arabidopsis flowering: The chill before the bloom. Development 131: 3829-3838.

Heo, J. B. and S. Sung. 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331: 76-79.

Hossain, M. M., H. Inden and T. Asahira. 1990. Seed vernalized interspecific hybrids through in vitro ovule culture in Brassica. Plant Sci. 68: 95-102.

Huang, F., T. Liu and X. Hou. 2018b. Isolation and functional characterization of a floral repressor, BcMAF1, from Pak-choi (Brassica rapa ssp. chinensis). Front. Plant Sci. 9: 290. Huang, F., T. Liu, J. Tang, W. Duan and X. Hou. 2019. BcMAF2 activates BcTEM1 and represses flowering in Pak-choi (Brassica rapa ssp. chinensis). Plant Mol. Biol. 100: 19-32.

Huang, F., X. Wu, X. Hou, S. Shao and T. Liu. 2018a. Vernalization can regulate flowering time through microRNA mechanism in Brassica rapa. Physiol. Plant. 164: 204-215.

Irwin, J. A., E. Soumpourou, C. Lister, J. D. Ligthart, S. Kennedy and C. Dean. 2016. Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas. Plant J. 87: 597-605.

Irwin, J. A., C. Lister, E. Soumpourou, Y. Zhang, E.C. Howell, G. Teakle and C. Dean. 2012. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biol. 12: 21.

Itabashi, E., K. Osabe, R. Fujimoto and T. Kakizaki. 2018. Epigenetic regulation of agronomical traits in Brassicaceae. Plant Cell Rep. 37: 87-101.

Ito H, T. Saito and T. Hatayama. 1966. Time and temperature factors for the flower formation in cabbage II. The site of vernalization and the nature of vernalization sensitivity. Tohoku. J. Agri. Res. 17: 1-15.

Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino and C. Dean. 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344-347.

Jung, W. Y., A. Lee, J. S. Moon, Y. S. Kim, and H. S. Cho. 2018. Genome-wide identification of flowering time genes associated with vernalization and the regulatory flowering networks in Chinese cabbage. Plant Biotechnol. Rep. 12: 347-363.

Kakizaki, T., T. Kato, N. Fukino, M. Ishida, K. Hatakeyama and S. Matsumoto. 2011. Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed. Sci. 61: 151-159.

Kawamura, K., T. Kawanabe, M. Shimizu, A. J. Nagano, N. Saeki, K. Okazaki, M. Kaji, E. S. Dennis, K. Osabe and R. Fujimoto. 2016. Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene 5: 1-7.

Kawanabe, T., K. Osabe, E. Itabashi, K. Okazaki, E. S. Dennis and R. Fujimoto. 2016. Development of primer sets that can verify the enrichment of histone modifications, and their application to examining vernalization-mediated chromatin changes in Brassica rapa L. Genes Genet. Syst. 91: 1-10.

Kim, D. H. and S. Sung. 2017. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40: 302-312.

Kim, D. H. and S. Sung. 2010. The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proc. Natl. Acad. Sci. U. S. A. 107: 17029-17034.

Kim, D. H. and S. Sung. 2014. Genetic and epigenetic mechanisms underlying vernalization. The Arabidopsis Book 12: e0171.

Kim, D. H., M.R. Doyle, S. Sung and R. M. Amasino. 2009. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277-299.

Kim, D., B. Langmead, and S. L. Salzberg. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12: 357-360.

Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley and S. L. Salzberg. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14: R36.

Kim, S. Y., B. S. Park, S. J. Kwon, J. Kim, M. H. Lim, Y. D. Park, D. Y. Kim, S. C. Suh, Y. M. Jin, J. H. Ahn and Y. H. Lee. 2007. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep. 26: 327-336.

Kitamoto, N, S. Yui, K. Nishikawa, Y. Takahata and S. Yokoi. 2014. A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196: 213-223.

Kitamoto, N., K. Nishikawa, Y. Tanimura, S. Urushibara, T. Matsuura, S. Yokoi, Y. Takahata and S Yui. 2017. Development of late-bolting F1 hybrids of Chinese cabbage (Brassica rapa L.) allowing early spring cultivation without heating. Euphytica 213:292.

Ko, J. H., I. Mitina, Y. Tamada, Y. Hyun, Y. Choi, R.M. Amasino, B. Noh and Y. S. Noh. 2010. Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO J. 29: 3208-3215.

Kole, C., P Quijada, S. D. Michaels, R. M. Amasino and T. C. Osborn. 2001. Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor. Appl. Genet. 102: 425-430.

Kole, C., P. Quijada, S. D. Michaels, R. M. Amasino, T. C. Osborn. 2001. Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor. Appl. Genet. 102 :425-430.

Lafos, M., P. Kroll, M. L. Hohenstatt, F. L. Thorpe, O. Clarenz and D. Schubert. 2011, Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet. 7: e1002040.

Le Corre, V., F. Roux and X. Reboud. 2002. DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol. Biol. Evol. 19: 1261-1271.

Lee, I. and R. M. Amasino. 1995. Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 108: 157-162.

Leijten, W., R. Koes, I. Roobeek and G. Frugis. 2018. Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae crop species. Plants 7: E111.

Levy, Y. Y., S. Mesnage, J. S. Mylne, A.R. Gendall and C. Dean. 2002. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243-246.

Li, X., S. Zhang, J. Bai and Y. He. 2016. Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotechnol. J. 14: 905-914.

Li, F., H. Kitashiba, K. Inaba and T. Nishio. 2009. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res. 16: 311-323.

Lin, S. I., J. G. Wang, S. Y. Poon, C. L. Su, S. S. Wang and T. J. Chiou. 2005. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol. 137: 1037-1048.

Liu, C., F. Lu, X. Cui and X. Cao. 2010. Histone methylation in higher plants. Annu. Rev. Plant Biol. 61: 395-420.

Liu, C., S. Wang, W. Xu and X. Liu. 2017. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization. PLoS One 12: e0177594.

Lo, C. C. and P. S. Chain. 2014. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinformatics 15: 366.

Long, W., X. Zou and X. Zhang. 2015.Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PLoS One 10: e0116217.

Lou, P., J. Zhao, J. S. Kim, S. Shen, D. P. Del Carpio, X. Song, M. Jin, D. Vreugdenhil, X. Wang, M. Koornneef and G. Bonnema. 2007. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J. Exp. Bot. 58: 4005- 4016.

Lyons, R., A. Rusu, J. Stiller, J. Powell, J. M. Manners and K. Kazan. 2015. Investigating the association between flowering time and defense in the Arabidopsis thaliana-Fusarium oxysporum interaction. PLoS One 10: e0127699.

Makarevitch, I., S. R. Eichten, R. Briskine, A. J. Waters, O. N. Danilevskaya, R. B. Meeley, C. L. Myers, M. W. Vaughn and N. M. Springer. 2013. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27. Plant Cell 25: 780-793.

Más P., P. F. Devlin, S. Panda and S. A. Kay. 2000. Functional interaction of phytochrome B and cryptochrome 2. Nature 408 :207-211.

Méndez-Vigo, B., F. X. Picó, M. Ramiro, J. M. Martínez-Zapater and C. Alonso-Blanco. 2011. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol. 157: 1942-1955.

Michaels, S. D. and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956.

Michaels, S. D. and R. M. Amasino. 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13: 935-941.

Michaels, S. D. and R. M. Amasino.1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956.

Miyaji, N., M. Shimizu, J. Miyazaki, K. Osabe, M. Sato, Y. Ebe, S. Takada, M. Kaji, E. S. Dennis, R. Fujimoto and K. Okazaki. 2017. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L. Plant Cell Rep. 36: 1841-1854.

Moghaddam, A. M., F. Roudier, M. Seifert, C. Bérard, M. L. Magniette, R. K. Ashtiyani, A. Houben, V. Colot, and M. F. Mette. 2011. 2011. Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J. 67: 691-700.

Mortazavi, A., B. A. Williams, K. McCue, L. Schaeffer and B. Wold. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628.

Mylne J. S., L. Barrett, F. Tessadori, S. Mesnage, L. Johnson, Y. V. Bernatavichute, S. E. Jacobsen, P. Fransz and C. Dean. 2006. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl. Acad. Sci. U.S.A. 103: 5012-5017.

Nagano, A. J., M. N. Honjo, M. Mihara, M. Sato and H. Kudoh. 2015. Detection of plant viruses in natural environments by using RNA-Seq. Methods Mol. Biol. 1236: 89-98.

Oh, S., H. Zhang, P. Ludwig and S. van Nocker. 2004. A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16: 2940-2953.

Okazaki, K., K. Sakamoto, R. Kikuchi, A. Saito, E. Togashi, Y. Kuginuki, S. Matsumoto and M. Hirai. 2007. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 114: 595-608.

Osborn, T. C., C. Kole, I. A. P. Parkin, A. G. Sharpe, M. Kuiper, D. J. Lydiate and M. Trick. 1997. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146: 1123-1129.

Pouteau, S. and C. Albertini. 2009. The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J. Exp. Bot. 60: 3367- 3377.

Quadrana, L. and V. Colot, 2016. Plant transgenerational epigenetics. Annu. Rev. Genet. 50: 467-491.

Raman, H., R. Raman, N. Coombes, J. Song, R. Prangnell, C. Bandaranayake, R. Tahira,V. Sundaramoorthi, A. Killian, J. Meng, E. S. Dennis and S. Balasubramanian. 2016. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ. 39: 1228-1239.

Ratcliffe, O. J., R. W. Kumimoto, B. J. Wong and J. L. Riechmann. 2003. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15: 1159-1169.

Ratcliffe, O. J., G. C. Nadzan, T. L. Reuber and J. L. Riechmann. 2001. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 126: 122-132.

Razi, H., E.C. Howell, H. J. Newbury and M. J. Kearsey. 2008. Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor. Appl. Genet. 116: 179-192.

Richards E. J. 2011. Natural epigenetic variation in plant species: A view from the field. Curr. Opin. Plant Biol. 14: 204-209.

Risk, J. M., R. E. Laurie, R. C. Macknight, and C. L. Day. 2010. FRIGIDA and related proteins have a conserved central domain and family specific N-and C-terminal regions that are functionally important. Plant Mol. Biol. 73: 493-505.

Saeki, N., T. Kawanabe, H. Ying, M. Shimizu, M. Kojima, H. Abe, K. Okazaki, M. Kaji, J. M. Taylor, H. Sakakibara, W. J. Peacock, E. S. Dennis and R. Fujimoto. 2016. Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biol. 16: 45.

Saitou, N. and M. Nei. 1987.The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Schiessl, S. V., B. Huettel, D. Kuehn, R. Reinhardt and R. J. Snowdon. 2017. Flowering time gene variation in Brassica species shows evolutionary principles. Front. Plant Sci. 8: 1742.

Schranz, M. E., P. Quijada, S. B. Sung, L. Lukens, R. Amasino and T. C. Osborn. 2002. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162: 1457-1468.

Scortecci, K. C., S. D. Michaels and R. M. Amasino. 2001. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J. 26: 229-236.

Scortecci, K., S. D. Michaels and R. M. Amasino. 2003. Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Mol. Biol. 52: 915-922.

Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Kröber, R. A. Amasino and G. Coupland. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20: 898-912.

Shea, D. J., N. Nishida, S. Takada, E. Itabashi, S. Takahashi, A. Akter, N. Miyaji, K. Osabe, H. Mehraj, M. Shimizu, M. Seki, T. Kakizaki, K. Okazaki, E. S. Dennis and R. Fujimoto. 2019. Long noncoding RNAs in Brassica rapa L. following vernalization. Sci. Rep. 9: 9302.

Shea, D. J., E. Itabashi, S. Takada, E. Fukai, T, Kakizaki, R. Fujimoto and K. Okazaki. 2018. The role of FLOWERING LOCUS C in vernalization of Brassica: the importance of vernalization research in the face of climate change. Crop Pasture Sci. 69: 30-39.

Shea, D. J., M. Shimizu, E. Itabashi, N. Miyaji, J. Miyazaki, K. Osabe, M. Kaji, K. Okazaki and R. Fujimoto. 2018. Genome re-sequencing, SNP analysis, and genetic mapping of the parental lines of a commercial F1 hybrid cultivar of Chinese cabbage. Breed. Sci. 68: 375- 380.

Shea, D. J., Y. Tomaru, E. Itabashi, Y. Nakamura, T. Miyazaki, T. Kakizaki, T.N. Naher, M. Shimizu, R. Fujimoto, E. Fukai, and K. Okazaki. 2018. The production and characterization of a BoFLC2 introgressed Brassica rapa by repeated backcrossing to an F1. Breed. Sci. 68: 316-325.

Sheldon C. C., A. B. Conn, E. S. Dennis, W. J. Peacock 2002. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14: 2527-2537.

Sheldon, C. C., E. J. Finnegan, E. S. Dennis and W. J. Peacock. 2006. Quantitative effects of vernalization on FLC and SOC1 expression. Plant J. 45: 871-883.

Sheldon, C. C., E. J. Finnegan, W. J. Peacock and E. S. Dennis. 2009. Mechanisms of gene repression by vernalization in Arabidopsis. Plant J. 59: 488-498.

Sheldon, C. C., J. E. Burn, P. P. Perez, J. Metzger, J. A. Edwards, W. J. Peacock and E. S. Dennis. 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11: 445-458.

Sheldon, C. C., D. T. Rouse, E. J. Finnegan, W. J. Peacock and E. S. Dennis. 2000. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. U.S.A. 97: 3753-3758.

Shimizu, M., R. Fujimoto, H. Ying, Z. J. Pu, Y. Ebe, T. Kawanabe, N. Saeki, J. M. Taylor, M. Kaji, E. S. Dennis and K. Okazaki. 2014. Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol. Biol. 85: 247-257.

Shindo C., M. J. Aranzana, C. Lister, C. Baxter, C. Nicholls, M. Nordborg and C. Dean. 2005. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138 :1163-1173.

Simpson, G. G. 2004. The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7 :570- 574.

Srikanth, A. and M. Schmid. 2011. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 68: 2013-2037.

Su, T., W. Wang, P. Li, B. Zhang, P. Li, X. Xin, H. Sun, Y. Yu, D. Zhang, X. Zhao, C. Wen, G. Zhou, Y. Wang, H. Zheng, S. Yu and F, Zhang. 2018. A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Mol. Plant 11: 1360-1376.

Sun, M., X. Qi, L. Hou, X. Xu, Z. Zhu and M. Li. 2015. Gene expression analysis of pak choi in response to vernalization. PLoS One 10: e0141446.

Sung, S. and R. M. Amasino. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427: 159-164.

Sung S., Y. He, T.W. Eshoo, Y. Tamada, L. Johnson, K. Nakahigashi, K. Goto, S. E. Jacobsen and R. M. Amasino. 2006. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet. 38: 706-710

Sung, S. and R. M. Amasino. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427: 159-164.

Swiezewski, S., F. Liu, A. Magusin and C. Dean. 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462: 799-802.

Swindell, W. R., M. Huebner and A. P. Weber. 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8: 125.

Tadege, M., C. C. Sheldon, C. A. Helliwell, P. Stoutjesdijk, E. S. Dennis and W. J. Peacock. 2001. Control of flowering time by FLC orthologues in Brassica napus. Plant J. 28: 545- 553.

Takada, S., A. Akter, E. Itabashi, N. Nishida, D. J. Shea, N. Miyaji, H. Mehraj, K. Osabe, M. Shimizu, T. Takasaki-Yasuda, T. Kakizaki, K. Okazaki, E. S. Dennis and R. Fujimoto. 2019. The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables. Sci. Rep. 9: 13843.

Takahashi, S., K. Osabe, Fukushima, S. Takuno, N. Miyaji, M. Shimizu, T. Takasaki-Yasuda, Y. Suzuki, E.S. Dennis, M. Seki and R. Fujimoto. 2018. Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in Brassica rapa L.. DNA Res. 25: 511-520.

Takahashi, S., N. Fukushima, Osabe, E. Itabashi, M. Shimizu, N. Miyaji, T. Takasaki-Yasuda, Y. Suzuki, M. Seki and R. Fujimoto. 2018. Identification of DNA methylated regions by using methylated DNA immunoprecipitation sequencing in Brassica rapa. Crop Pasture Sci. 69: 107-120.

Tang, H., M. R. Woodhouse, F, Cheng, J. C. Schnable, B. S. Pedersen, G. Conant, X. Wang, M. Freeling, J. C. Pires. 2012. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190: 1563-1574. Teutonico, R. A. and T. C. Osborn. 1996. Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to linkage maps of B. napus, B. oleracea and Arabidopsis. Theor. Appl. Genet. 89: 885-894.

Tong, C., X. Wang, J. Yu, J. Wu, W. Li, J. Huang, C. Dong, W. Hua and S. Liu. 2013. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14: 689.

Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn and L. Pachter. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578.

Tsai, M. C., O. Manor, Y. Wan, N. Mosammaparast, J. K. Wang, F. Lan, Y. Shi, E. Segal, H. Y. Chang. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329: 689-693.

Turck, F., F. Roudier, S. Farrona, M. L. Martin-Magniette, E. Guillaume, N. Buisine, S. Gagnot, R. A. Martienssen, G. Coupland and V. Colot. 2007. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3: e86.

UN: 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7: 389-452.

Wang, N., W. Qian, I. Suppanz, L. Wei, B. Mao, Y. Long, J. Meng, A. E. Müller and C. Jung. 2011. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J. Exp. Bot. 62: 5641-5658.

Wang, R., S. Farrona, C. Vincent, A. Joecker, H. Schoof, F. Turck, C. Alonso-Blanco, G. Coupland and M. C. Albani. 2009. PEP1 regulates perennial flowering in Arabis alpina. Nature. 459: 423-427.

Wang, A., J. Hu, X. Huang, X. Li, G. Zhou and Z. Yan. 2016. Comparative transcriptome analysis reveals heat-responsive genes in Chinese cabbage (Brassica rapa ssp. chinensis). Front. Plant Sci. 7: 939.

Wang, J., Y. Qiu, F. Cheng, X. Chen, X. Zhang, H. Wang, J. Song, M. Duan, H. Yang and X. Li. 2017. Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.). BMC Genomics 18: 981.

Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J. H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J. C. Pires, A. H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A. G. Sharpe, B. S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G. J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I. A. Parkin, J. Batley, J. S. Kim, J. Just, J. Li, J. Xu, J. Deng, J. A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M. G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P. J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S. J. Kwon, S. R. Choi, T. H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wa g, Z. Wang, Z. Li, Z. Wang, Z. Xiong and Z. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43: 1035-1039.

Weinhofer, I., Hehenberger, E., Roszak, P., Hennig, L. and Köhler, C. 2010, H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet. 6: e1001152.

Whittaker, C. and C. Dean. The FLC locus: 2017. A platform for discoveries in epigenetics and adaptation. Ann. Rev. Cell Dev. Biol. 33: 555-575.

Wood, C. C., M. Robertson, G. Tanner, W. J. Peacock, E. S. Dennis and C. A. Helliwell. 2006. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc. Natl. Acad. Sci. U. S. A. 103: 14631-14636.

Xiao, D., J. J. Zhao, X. L. Hou, R. K. Basnet, D. P. D. Carpio, N. W. Zhang, J. Bucher, K. Lin, F. Cheng, X. W. Wang and G. Bonnema. 2013.The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J. Exp. Bot. 64: 4503-4516.

Xiao, D., J. J. Zhao, X.L. Hou, R. K. Basnet, D. P. Carpio, N. W. Zhang, J. Bucher, K. Lin, F. Cheng, X. W. Wang and G. Bonnema.2013. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J. Exp. Bot. 64: 4503-4516.

Xiao, J., Lee, U. S. and Wagner, D. 2016. Tug of war: adding and removing histone lysine methylation in Arabidopsis. Curr. Opin. Plant Biol. 34: 41-53.

Xing, M., H. Lv, J. Ma, D. Xu, H. Li, L. Yang, J. Kang, X. Wang and Z. Fang. 2016. Transcriptome profiling of resistance to Fusarium oxysporum f. sp. conglutinans in cabbage (Brassica oleracea) roots. PLoS One 11: e0148048.

Yong, H. Y., Z. Zou, E. P. Kok, B. H. Kwan, K. Chow, S. Nasu, M. Nanzyo, H. Kitashiba and T. Nishio. 2014. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. BioMed Res. Int. 2014: 1–19.

Zhang, H. and S. van Nocker. 2002. The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant J. 31: 663-667.

Zhang, X., O Clarenz, Cokus, Y. V. Bernatavichute, M. Pellegrini, J. Goodrich and S.E. Jacobsen. 2007. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5: e129.

Zhao, J., V, Kulkarni, Liu N, Del Carpio DP, Bucher J, Bonnema G. BrFLC2(FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J. Exp. Bot. 61: 1817-1825.

Zhao, J., V. Kulkarni, N. Liu, D. P. Del Carpio, J. Bucher and G. Bonnema. 2010. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J. Exp. Bot. 61: 1817-1825.

Zheng, B. and Chen, X. 2011. Dynamics of histone H3 lysine 27 trimethylation in plant development. Curr. Opin. Plant Biol. 14: 123-129.

Zhu, A., Greaves, I. K., Dennis, E. S. and Peacock, W. J. 2017. Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage. BMC Genomics 18: 137.

Zou, X., X. Tan, C. Hu, L. Zeng, G. Lu, G. Fu, Y. Cheng and X. Zhang. 2013. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. Int. J. Mol. Sci. 14: 2637-2651.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る