リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Theoretical Study on the Mechanism for the Reduction of Effective g-factor in Graphene」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Theoretical Study on the Mechanism for the Reduction of Effective g-factor in Graphene

Shrestha Amit 広島大学

2022.03.02

概要

Graphene is two-dimensional layer of carbon atoms arranged in a hexagonal lattice, a
thinnest material at one atom thick, and also incredibly strong. Graphene is a remarkable material that is getting a lot of attention and rapidly rising on the horizon of material science and condensed matter physics due to its unusual properties in a magnetic
field [1–30]. Such a astonishing properties are strong orbital diamagnetism [1–13], unconventional oscillation of magnetization [14–16], and half integer quantum Hall effect
[17–27, 30]. Graphene represents a conceptually new class of materials that offers new
inroads into low-dimensional physics which provide a fertile ground for many applications
such as electronic and spintronic devices [28–37].
Few years back, our group has developed the magnetic field containing relativistic tightbinding approximation (MFRTB) method [38] which allows us to calculate the electronic
structure of materials taking effects of magnetic field, periodic potential and relativistic
effects such as the spin-orbit (SO) interaction into consideration. With MFRTB method,
we can revisit the several phenomenon like dHvA oscillation [39–41], magnetic breakdown
[41] and can also predict additional oscillation peaks of the magnetization [40] which the
conventional LK formula [42] can’t explain. In this method the effect of magnetic field
is taken as the perturbation and the hopping integrals are evaluated using perturbation
theory [38]. The effect of magnetic field is appeared in so-called Peierls phase factor which
multiplies the hopping integral in the absence of a magnetic field giving the approximated
form of magnetic hopping integral [38]. However, there are some rooms to increase the
accuracy of the magnetic hopping integrals. In order to address this discrepancy, our
group also developed the nonperturbative MFRTB method [43], in which the effect of
magnetic field is incorporated by using the nonperturbative method. With this method,
the approximated form of magnetic hopping integrals that goes beyond the approximation of using the Peierls phase factor [43] are obtained successfully. Thus, this method is
suitable for describing and investigating magnetic properties of graphene.
Among various physical quantities which determine electronic properties, optical properties, chemical properties and thermal conductivity, the g-factor of graphene is the keyquantity on determining magnetic properties of materials like spin-related properties such
as the spin relaxation time. Recently, a reduction in the g-factor of graphene has been
reported in the experiments on electron spin resonance (ESR) [28, 29] when graphene is
subjected to an external magnetic field. The observed g-factor is about 3.1 percent smaller
than that of a free electron (g=2.0023). ...

この論文で使われている画像

参考文献

[1] J. W. McClure. Phys. Rev. , 104, 666 (1956).

[2] J. W. McClure. Phys. Rev. , 119, 666 (1960).

[3] S. A. Safran and F.J. DiSalvo. Phys. Rev. B , 20, 4889 (1979).

[4] R. Saito and H. Kamimura. Phys. Rev. B , 33, 7218 (1986).

[5] H. Fukuyama. J. Phys. Soc. Jpn., 76, 043711 (2007).

[6] M. Koshino and T. Ando. Phys. Rev. B , 75, 235333 (2007).

[7] M. Sepioni, R. R. Nair, S. Rablen, J. Narayanan, F. Tuna, R. Winpenny, A. K.

Geim, and I. V. Grigorieva . Phys. Rev. Lett. , 105, 207205 (2010).

[8] A. Raoux, F. Piechon, J. N. Fuchs, and G. Montambaux. Phys. Rev. B , 91, 085120

(2015).

[9] Y. Gao, S. A. Yang, and Q. Niu. Phys. Rev. B , 91, 214405 (2015).

[10] G. Gomez-Santos and T. Stauber. Phys. Rev. Lett. , 106, 045504 (2011).

[11] S. A. Safran. Phys. Rev. B , 30, 421 (1984).

[12] M. Koshino, Y. Arimura, and T. Ando. Phys. Rev. Lett. , 102, 177203 (2009).

[13] M. Ogata and H. Fukuyama. J. Phys. Soc. Jpn. , 84, 124708 (2015).

[14] S. G. Sharapov, V. P. Gusynin, and H. Beck. Phys. Rev. B, 69, 075104 (2004).

[15] K. Kishigi, and Y. Hasegawa. Phys. Rev. B, 90, 085427 (2014).

[16] F. Escudero, J. S. Ardenghi, L. Sourrouille, and P. Jasen. J. Magn. Matter, 429,

294 (2017).

[17] Y. Zheng and T. Ando. Phys. Rev. B, 65, 245420 (2002).

[18] C. L. Kane and E. J. Mele. Phys. Rev. Lett., 95, 226801 (2005).

[19] Y. Zhang. Y. W. Tan, H. L. Stormer, and P. Kim. Nature, 438, 201 (2005).

[20] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D.

Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim. Phys. Rev. Lett., 96, 136806

(2006).

110

[21] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Phys. Rev. Lett.,

49, 405 (1982).

[22] P. Streda. J. Phys. C 15, L1299 (1982).

[23] A. H. McDonald. Phys. Rev. B 28, 6713 (1983).

[24] M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, and T. Osada. Phys. Rev. Lett.

86, 1062 (2001).

[25] Y. Hasegawa and M. Kohomoto. Phys. Rev. B 74, 155415 (2006).

[26] Y. Hatsugai, T. Fukui, and H. Aoki. Phys. Rev. B 74, 205414 (2006).

[27] M. Koshino and T. Ando. Phys. Rev. B 73, 155304 (2006).

[28] R. G. Mani, J. Hankinson, C. Berger, and W. A. de Heer. Nat. Commun. 3, 996

(2012).

[29] T. J. Lyon, J. Sichau, A. Dorn, A. Centeno, A. Pesquera, A. Zurutuza, and R. H.

Blick. Phys. Rev. Lett. 119, 066802 (2017).

[30] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.

Grigorieva, S. V. Dubonos, and A. A. Firsov. Nature, 438, 197 (2005).

[31] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.

Grigorieva, S. V. Dubonos, and A. A. Firsov. Nature, 306, 666 (2004).

[32] A. K. Geim, and K. S. Novoselov. Nature Mat., 6, 183 (2007).

[33] P. Avouris, T. F. Heinz, and T. Low. 2D materials: Properties and Devices. (Cambridge University Press, Cambridge, 2017).

[34] M. Balkanski. Devices based on Low-dimensional Semiconductor Structures.

(Kluwer Academic Publishers, Dordrecht, 1996).

[35] K. Higuchi, H. Matsumoto, T. Mishima, and T. Nakamura. IEEE Trans. Elec.

Dev., 46, 1312 (1999).

[36] T. Mishima, M. Kudo, J. Kasai, K. Higuchi, and T. Nakamura. J. Cryst. Growth.,

201-202, 271 (1999).

[37] G. Hellings and K. De Myer.

Springer, New York, 2013).

High mobility and Quantum Well Transistors,

[38] K. Higuchi, D. B. Hamal, and M. Higuchi. Physical Review B, 91, 075122 (2015).

[39] D. B. Hamal, M. Higuchi, and K. Higuchi. Physical Review B, 91, 245101 (2015).

[40] M. Higuchi, D. B. Hamal, and K. Higuchi. Physical Review B, 95, 195153 (2017).

[41] K. Higuchi, D. B. Hamal, and M. Higuchi. Physical Review B, 96, 235125 (2017).

[42] I. M. Lifshiz, and A. M. Kosevich. Sov. Phys. JETP 2, 636 (1956).

111

[43] K. Higuchi, D. B. Hamal, and M. Higuchi. Physical Review B, 97, 195135 (2018).

[44] P. R. Wallace. Phys. Rev. , 71, 622 (1947).

[45] G. S. Painter and D. E. Ellis. Phys. Rev. B, 1, 4747 (1970).

[46] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian. Phys. Rev.

B, 80, 235431 (2009).

[47] H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. kleinman, and A. H. MacDonald.

Phys. Rev. B, 74, 165310 (2006).

[48] M. Higuchi, D. B. Hamal, A. Shrestha, and M. Higuchi. J. Phys. Soc. Jpn., 88,

094707 (2019).

[49] K. S. Krishnan. Nature, 133, 174 (1934).

[50] A. K. Geim, and I. V. Grigorieva. Phys. Rev. Lett., 105, 207205 (2010).

[51] E. I. Rashba. Sov. Phys. Solid State 2. 1109 (1960).

[52] Y. A. Bychkov and E. I. Rashba. JETP Lett., 39, 78 (1984).

[53] Yu. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat . Phys. Rev. Lett. , 100,

107602 (2008).

[54] A. Messiah. Quantum Mechanics. (North-Holland, Amsterdam, 1966), Chap. 20.

[55] H. Friedrich. Theoretical atomic Physics. 3rd ed. (Springer, Berlin, 2006) , Chap.

3.

[56] E. Brown. Phys. Rev., 133, A1038 (1964).

[57] D. R. Hofstadter. Physical Review B, 14, 2239 (1976).

[58] P. Hohenberg and W. Kohn. Phys. Rev., 136, B864 (1964).

[59] R. M. Martin. Electronic Structure. (Cambridge University Press, Cambridge,

2004), Chap. 14.

[60] T. Inui. Electronic Structure. (Cambridge University Press, Cambridge, 2004),

Chap. 14.

[61] M. Higuchi, D. B. Hamal, A. Shrestha, and K. Higuchi . J. Phys. Soc. Jpn., 88,

094707 (2019).

[62] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz. WIEN2K ed.

K. Schwarz (Technische Universitat Wien, Vieenna, 2001).

[63] J. Yafet. Solid State Phys. 14, 1 (1963).

[64] W. Kohn and L. J. Sham. Phys. Rev., 140, A1133 (1965).

[65] M. Levy. Proc. Natl. Acad. Sci. U.S.A., 76, 6062 (1979).

[66] M. Levy. Phys. Rev. A, 26, 1200 (1982).

112

[67] M. Higuchi and A. Hasegawa. J. Phys. Soc. Jpn., 64, 830 (1995).

[68] H. Sugawara, M. Higuchi, O. Inoue, T. Nishigaki, Y. Aoki, H. Sato, R. Setti, Y.

Onuki, and A Hasegawa. J. Phys. Soc. Jpn., 65, 1744 (1996).

[69] K. Higuchi and M. Higuchi. J. Mag. Mag. Matter., 272-276, 659 (2004).

[70] K. Higuchi and M. Higuchi. Phys. Rev. A, 79, 0022113 (2009).

[71] P. Ziesche. Phys. Lett. A, 195, 213 (1994).

[72] A. Gonis, T. C. Schulthess, J. van Ek, and P. E. A. Turchi. Phys. Rev. Lett., 77,

2981 (1996).

[73] M. Levy and P. Ziesche. J. Chem. Phys., 115, 9110 (2001).

[74] A. Nagy. Phys. Rev. A, 66, 022505 (2002).

[75] N. H. March and R. Santamaria. Int. J. Quantum Chem., 39, 585 (1991).

[76] P. W. Ayers. J. Math, Phys., 46, 062107 (2005).

[77] M. Higuchi, M. Miyasita, M. Kodera, and K. Higuchi. J. Magn. Magn. Matter,

310, 990 (2007).

[78] P. W. Ayers and S. Liu. Phys. Rev. A, 75, 022514 (2007).

[79] B. Hetenyi and A. W. Hauser. Phys. Rev. B, 77, 155110 (2008).

[80] M. Higuchi and K. Higuchi. Phys. Rev.B, 78, 125101 (2008).

[81] K. Higuchi and M. Higuchi. J. Phys. Condens. Matter , 21, 064206 (2009).

[82] K. Higuchi and M. Higuchi. Phys. Rev. B, 82, 155135 (2010).

[83] M. Higuchi and K. Higuchi. Phys. Rev. A, 84, 044502 (2011).

[84] M. Higuchi and K. Higuchi. Comput. Theor. Chem, 1003, 91 (2013).

[85] A. Nagy. Phys. Rev. A, 90, 022505 (2014).

[86] D. Chakraborty and P. W. Ayers. J. Math. Chem., 49, 1810 (2011).

[87] R. Cuev-Saavedra and P. W. Ayers.

[88] G. Vignale and M. Rasolt. Phys. Rev. Lett., 59, 2360 (1987).

[89] G. Vignale and M. Rasolt. Phys. Rev. B, 37, 10685 (1988).

[90] M. Higuchi and K. Higuchi. Phys. Rev. A, 81, 042505 (2010).

[91] K. Higuchi and M. Higuchi. J. Phys. Condens. Matter , 19, 365216 (2007).

[92] If we consider graphene that is placed in a vacuum, then the surface potential

caused by the work function is symmetric with respect to the z-axis. In this case,

the SO interaction caused by the surface potential vanishes because of the parity

of the wave function.

113

[93] S. LaShell, B. A. McDougall, and E. Jensen. Phys. Rev.Lett., 77, 3419 (1996).

[94] M. Nagano, A. Kodama, T. Shishidou, and T. Oguchi. J. Phys.: Condens. Matter,

21, 064239 (2009).

[95] Y. Liu, A. Goswami, F. Liu, D. L. Smith, and P. P. Ruden. J. Appl. Phys., 116,

234301 (2014).

[96] N. D. Lang and W. Kohn. Phys. Rev. B, 1, 4555 (1970).

[97] A. Shrestha, K. Higuchi, S. Yoshida, and M. Higuchi. J. of Appl. Phys., 130,

124303 (2021).

[98] H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F. Z. Guo, and Y. Watanabe.

Phys. Rev. B, 79, 125437 (2009).

[99] K. Matsubara, T. Tsuzuku, and K. Sugihara. Phys. Rev. B, 44, 11845 (1991).

[100] D. L. Huber, R. R. Urbano, M. S. Sercheli and C. Rettori. Phys. Rev. B, 70, 125417

(2004).

[101] J.C. Slater and G.F. Koster. Phys. Rev., 94, 1498 (1954).

[102] W. Kohn. Phys. Rev., 123, 1242 (1961).

[103] T. Ando and Y. Uemura. J. Phys. Soc. Jpn., 37, 1044 (1974).

[104] E. V. kurganova, H. J. vanElferen, A. McCollam, L. A. Ponomarenko, K. S.

Novoselov, A. Veligura, B. J. van Wees, J. C. Maan, and U. Zeitler. Phys. Rev. B,

84, 121407(R) (2011).

[105] A. V. Volkov, A. A. Shylau and I. V. Zozoulenko. Phys. Rev., 86, 155440 (2012).

[106] M. Higuchi and K. Higuchi. Phys. Rev.B, 69, 035113 (2004).

[107] K. Higuchi and M. Higuchi. Phys. Rev.B, 69, 165118 (2004).

[108] K. Higuchi, E. Miki and M. Higuchi. J. Phys. Soc. Jpn., 86, 064704 (2017).

[109] K. Higuchi, H. Niwa and M. Higuchi. J. Phys. Soc. Jpn., 86, 104705 (2017).

[110] K. Higuchi and M. Higuchi. Phys. Rev.B, 74, 195122 (2006).

[111] K. Higuchi and M. Higuchi. Phys. Rev.B, 75, 159902 (2007).

[112] M. Higuchi and A. Hasegawa. J. Phys. Soc. Jpn., 66, 149 (1997).

[113] M. Higuchi and A. Hasegawa. J. Phys. Soc. Jpn., 67, 2037 (1998).

[114] E. McCann and M. Koshino. Rep. Prog. Phys., 76, 056503 (2013).

[115] Y. Murata, S. Nie, A. Ebnonnasir, E. Starodub, B. B. Kappes, K. F. McCarty, C.

V. Ciobanu and S. Kodambaka. Phys. Rev. B, 85, 20543 (2012).

114

公表論文

(Articles)

(1) Reduction of g-factor due to Rashba effect in graphene. A. Shrestha, K.

Higuchi, S. Yoshida, and M. Higuchi,. Journal of Applied Physics, 130, 124303-1–

124303-9 (2021).

(2) Reduced effective g-factor in graphene. M. Higuchi, D. B. Hamal, A. Shrestha,

and K. Higuchi. Journal of the Physical Society of Japan, 88, 094707-1–094707-2

(2019).

115

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る