リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Glucose as a Protein-Condensing Cellular Solute」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Glucose as a Protein-Condensing Cellular Solute

Noda, Naotaka 京都大学 DOI:10.14989/doctor.k24090

2022.05.23

概要

The present study reports a surprising proteincondensing effect of glucose, prompted by our accidental observation during chemical library screening under a high-glucose condition. We noticed “glucosing-out” of certain compounds, in which physiological concentrations of glucose induced compound aggregation. Adapting the “glucosing-out” concept to proteins, our proteomic analysis identified three cellular proteins (calmodulin, rho guanine nucleotide exchange factor 40, and polyubiquitin-C) that displayed robust glucose-dependent precipitation. One of these proteins, calmodulin, formed glucose-dependent condensates that control cellular glycogenolysis in hepatic cells. Our findings suggest that glucose is a heretofore underappreciated driver of protein phase separation that may have profound effects on cellular homeostasis.

この論文で使われている画像

参考文献

(1) Brangwynne, C. P.; Eckmann, C. R.; Courson, D. S.; Rybarska, A.; Hoege, C.; Gharakhani, J.; Jülicher, F.; Hyman, A. A. Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation. Science 2009, 324, 1729−1732.

(2) Alberti, S.; Hyman, A. A. Biomolecular Condensates at the Nexus of Cellular Stress, Protein Aggregation Disease and Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196−213.

(3) Li, P.; Banjade, S.; Cheng, H.-C.; Kim, S.; Chen, B.; Guo, L.; Llaguno, M.; Hollingsworth, J. V.; King, D. S.; Banani, S. F.; et al. Phase Transitions in the Assembly of Multivalent Signalling Proteins. Nature 2012, 483, 336−340.

(4) Shin, Y.; Brangwynne, C. P. Liquid Phase Condensation in Cell Physiology and Disease. Science 2017, 357, No. eaaf4382.

(5) Wippich, F.; Bodenmiller, B.; Trajkovska, M. G.; Wanka, S.; Aebersold, R.; Pelkmans, L. Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to MTORC1 Signaling. Cell 2013, 152, 791−805.

(6) Peeples, W.; Rosen, M. K. Mechanistic Dissection of Increased Enzymatic Rate in a Phase-Separated Compartment. Nat. Chem. Biol. 2021, 17, 693−702.

(7) O’Flynn, B. G.; Mittag, T. The Role of Liquid−Liquid Phase Separation in Regulating Enzyme Activity. Curr. Opin. Cell Biol. 2021, 69, 70−79.

(8) Lyon, A. S.; Peeples, W. B.; Rosen, M. K. A Framework for Understanding the Functions of Biomolecular Condensates across Scales. Nat. Rev. Mol. Cell Biol. 2021, 22, 215−235.

(9) Yoshikawa, M.; Yoshii, T.; Ikuta, M.; Tsukiji, S. Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells. J. Am. Chem. Soc. 2021, 143, 6434−6446.

(10) Shiraki, K.; Mimura, M.; Nishinami, S.; Ura, T. Effect of Additives on Liquid Droplets and Aggregates of Proteins. Biophys. Rev. 2020, 12, 587−592.

(11) Cinar, S.; Cinar, H.; Chan, H. S.; Winter, R. Pressure-Sensitive and Osmolyte-Modulated Liquid−Liquid Phase Separation of Eye- Lens Γ-Crystallins. J. Am. Chem. Soc. 2019, 141, 7347−7354.

(12) Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A. A. ATP as a Biological Hydrotrope. Science 2017, 356, 753−756.

(13) Nishizawa, M.; Walinda, E.; Morimoto, D.; Kohn, B.; Scheler, U.; Shirakawa, M.; Sugase, K. Effects of Weak Nonspecific Interactions with ATP on Proteins. J. Am. Chem. Soc. 2021, 143, 11982−11993.

(14) Joshi, G.; Davis, A. P. New H-Bonding Patterns in Biphenyl-Based Synthetic Lectins; Pyrrolediamine Bridges Enhance Glucose- Selectivity. Org. Biomol. Chem. 2012, 10, 5760−5763.

(15) Walford, S.; Gale, E. A. M.; Allison, S. P.; Tattersall, R. B. SELF-MONITORING OF BLOOD-GLUCOSE Improvement of Diabetic Control. Lancet 1978, 311, 732−735.

(16) Gough, D. A.; Kreutz-Delgado, K.; Bremer, T. M. Frequency Characterization of Blood Glucose Dynamics. Ann. Biomed. Eng. 2003, 31, 91−97.

(17) Shiraga, K.; Suzuki, T.; Kondo, N.; Tajima, T.; Nakamura, M.; Togo, H.; Hirata, A.; Ajito, K.; Ogawa, Y. Broadband Dielectric Spectroscopy of Glucose Aqueous Solution: Analysis of the Hydration State and the Hydrogen Bond Network. J. Chem. Phys. 2015, 142, No. 234504.

(18) Wang, B.; Ezejias, T.; Feng, H.; Blaschek, H. Sugaring-out: A Novel Phase Separation and Extraction System. Chem. Eng. Sci. 2008, 63, 2595−2600.

(19) Tsai, W.-H.; Chuang, H.-Y.; Chen, H.-H.; Wu, Y.-W.; Cheng, S.-H.; Huang, T.-C. Application of Sugaring-out Extraction for the Determination of Sulfonamides in Honey by High-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. A 2010, 1217, 7812−7815.

(20) Choi, H.; Fermin, D.; Nesvizhskii, A. I. Significance Analysis of Spectral Count Data in Label-Free Shotgun Proteomics. Mol. Cell. Proteomics 2008, 7, 2373−2385.

(21) Takemoto-Kimura, S.; Suzuki, K.; Horigane, S.; Kamijo, S.; Inoue, M.; Sakamoto, M.; Fujii, H.; Bito, H. Calmodulin Kinases: Essential Regulators in Health and Disease. J. Neurochem. 2017, 141, 808−818.

(22) Marcelo, K. L.; Means, A. R.; York, B. The Ca2+/Calmodulin/ CaMKK2 Axis: Nature’s Metabolic CaMshaft. Trends Endocrinol. Metab. 2016, 27, 706−718.

(23) Anderson, K. A.; Lin, F.; Ribar, T. J.; Stevens, R. D.; Muehlbauer, M. J.; Newgard, C. B.; Means, A. R. Deletion of CaMKK2 from the Liver Lowers Blood Glucose and Improves Whole-Body Glucose Tolerance in the Mouse. Mol. Endocrinol. 2012, 26, 281−291.

(24) Exton, J. H. Role of Calcium and Phosphoinositides in the Actions of Certain Hormones and Neurotransmitters. J. Clin. Invest. 1985, 75, 1753−1757.

(25) Yang, P.; Mathieu, C.; Kolaitis, R.-M.; Zhang, P.; Messing, J.; Yurtsever, U.; Yang, Z.; Wu, J.; Li, Y.; Pan, Q.; et al. G3BP1 Is a Tunable Switch That Triggers Phase Separation to Assemble Stress Granules. Cell 2020, 181, 325−345.e28.

(26) Exton, J. H. Mechanisms of Hormonal Regulation of Hepatic Glucose Metabolism. Diabetes/Metab. Rev. 1987, 3, 163−183.

(27) Kedersha, N. L.; Gupta, M.; Li, W.; Miller, I.; Anderson, P. RNA-Binding Proteins Tia-1 and Tiar Link the Phosphorylation of Eif-2α to the Assembly of Mammalian Stress Granules. J. Cell Biol. 1999, 147, 1431−1442.

(28) Kedersha, N.; Ivanov, P.; Anderson, P. Stress Granules and Cell Signaling: More than Just a Passing Phase? Trends Biochem. Sci. 2013, 38, 494−506.

(29) Persson, L. B.; Ambati, V. S.; Brandman, O. Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability. Cell 2020, 183, 1572−1585.e16.

(30) Thomson, J. A.; Schurtenberger, P.; Thurston, G. M.; Benedek, G. B. Binary Liquid Phase Separation and Critical Phenomena in a Protein/Water Solution. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7079− 7083.

(31) Kato, M.; Yang, Y.-S.; Sutter, B. M.; Wang, Y.; McKnight, S. L.; Tu, B. P. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low- Complexity Domain. Cell 2019, 177, 711−721.e8.

(32) Fetahaj, Z.; Ostermeier, L.; Cinar, H.; Oliva, R.; Winter, R. Biomolecular Condensates under Extreme Martian Salt Conditions. J. Am. Chem. Soc. 2021, 143, 5247−5259.

(33) Jalihal, A. P.; Pitchiaya, S.; Xiao, L.; Bawa, P.; Jiang, X.; Bedi, K.; Parolia, A.; Cieslik, M.; Ljungman, M.; Chinnaiyan, A. M.; et al. Multivalent Proteins Rapidly and Reversibly Phase-Separate upon Osmotic Cell Volume Change. Mol. Cell 2020, 79, 978−990.e5.

(34) Jalihal, A. P.; Schmidt, A.; Gao, G.; Little, S. R.; Pitchiaya, S.; Walter, N. G. Hyperosmotic Phase Separation: Condensates beyond Inclusions, Granules and Organelles. J. Biol. Chem. 2021, 296, No. 100044.

(35) An, S.; Kumar, R.; Sheets, E. D.; Benkovic, S. J. Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells. Science 2008, 320, 103−106.

(36) Fuller, G. G.; Han, T.; Freeberg, M. A.; Moresco, J. J.; Kim, J. K.; et al. RNA Promotes Phase Separation of Glycolysis Enzymes into Yeast G Bodies in Hypoxia. eLife 2020, 9, No. e48480.

(37) Jin, M.; Fuller, G. G.; Han, T.; Yao, Y.; Alessi, A. F.; Freeberg, M. A.; Roach, N. P.; Moresco, J. J.; Karnovsky, A.; Baba, M.; et al. Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep. 2017, 20, 895−908.

(38) Qian, Q.; Williams, J. P.; Karounos, D. G.; Özcan, S. Nitric Oxide Stimulates Insulin Release in Liver Cells Expressing Human Insulin. Biochem. Biophys. Res. Commun. 2005, 329, 1329−1333.

(39) Mita, M.; Ito, M.; Harada, K.; Sugawara, I.; Ueda, H.; Tsuboi, T.; Kitaguchi, T. Green Fluorescent Protein-Based Glucose Indicators Report Glucose Dynamics in Living Cells. Anal. Chem. 2019, 91, 4821−4830.

(40) Mita, M.; Sugawara, I.; Harada, K.; Ito, M.; Takizawa, M.; Ishida, K.; Ueda, H.; Kitaguchi, T.; Tsuboi, T. Development of Red Genetically Encoded Biosensor for Visualization of Intracellular Glucose Dynamics. Cell Chem. Biol. 2022, 29, 98−108.e4.

(41) Chattopadhyaya, R.; Meador, W. E.; Means, A. R.; Quiocho, F. A. Calmodulin Structure Refined at 1.7 Å Resolution. J. Mol. Biol. 1992, 228, 1177−1192.

(42) Wilson, M. A.; Brunger, A. T. The 1.0 Å Crystal Structure of Ca2+-Bound Calmodulin: An Analysis of Disorder and Implications for Functionally Relevant Plasticity11Edited by I. Wilson. J. Mol. Biol. 2000, 301, 1237−1256.

(43) Muschol, M.; Rosenberger, F. Liquid−Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization. J. Chem. Phys. 1997, 107, 1953−1962.

(44) Meador, W. E.; Means, A. R.; Quiocho, F. A. Target Enzyme Recognition by Calmodulin: 2.4 Å Structure of a Calmodulin-Peptide Complex. Science 1992, 257, 1251−1255.

(45) Fallon, J. L.; Quiocho, F. A. A Closed Compact Structure of Native Ca2+Calmodulin. Structure 2003, 11, 1303−1307.

参考文献をもっと見る