リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「シグナル伝達抗体(Signalobody)を用いた細胞の運命制御系の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

シグナル伝達抗体(Signalobody)を用いた細胞の運命制御系の開発

戸根, 悠一郎 筑波大学 DOI:10.15068/0002008167

2023.09.04

概要

Cell-based therapeutics are attracting attention as a modality that can provide fundamental
treatments for intractable diseases. However, the cell-based therapeutics face the following challenges:
reducing the risk of tumorigenesis and undesirable immune responses in a patient, reducing the high
cost of manufacturing therapeutic cells, and creating cells that retain their functionality through
efficient differentiation. In order to overcome these challenges, control of cell fate in terms of
proliferation, differentiation, and death is necessary. A signalobody is a chimeric protein composed of
an antibody fragment and a signal-transducing domain derived from a cytokine receptor. Since
cytokine receptors are activated by ligand-induced oligomerization, signalobodies can be activated by
an oligomerized antigen and efficiently controls cell fate. Our previous studies revealed that
signalobodies are able to transduce growth signal. In this study, in order to further develop cell fate
control system using signalobody, the objectives were set as follows: (1) construction of a cell deathinducing signalobody, and (2) construction of a vector capable of switching expression of multiple
types of signalobodies. ...

この論文で使われている画像

参考文献

Abremski, K., Hoess, R., & Sternberg, N. (1983). Studies on the properties of P1 sitespecific recombination: evidence for topologically unlinked products following

recombination. Cell, 32(4), 1301–1311. https://doi.org/10.1016/0092-8674(83)903112

Akatsuka, Y. (2019). BASICS OF CAR-T CELL THERAPY AND ITS FUTURE

DEVELOPMENT. 日本輸血細胞治療学会誌, 65(6), 851–857.

https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002239410000051

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular

Biology of the Cell Fifth Edition. 1601. https://doi.org/10.1201/9780203833445

Alvarez, J. v., Febbo, P. G., Ramaswamy, S., Loda, M., Richardson, A., & Frank, D. A.

(2005). Identification of a Genetic Signature of Activated Signal Transducer and

Activator of Transcription 3 in Human Tumors. Cancer Research, 65(12), 5054–

5062. https://doi.org/10.1158/0008-5472.CAN-04-4281

Ankarcrona, M., Zhivotovsky, B., Holmström, T., Diana, A., Eriksson, J. E., Orrenius, S.,

& Nicotera, P. (1996). Lamin and beta-tubulin fragmentation precede chromatin

degradation in glutamate-induced neuronal apoptosis. Neuroreport, 7(15–17),

2659–2664. https://doi.org/10.1097/00001756-199611040-00050

Balistreri, C. R., de Falco, E., Bordin, A., Maslova, O., Koliada, A., & Vaiserman, A.

(2020). Stem cell therapy: old challenges and new solutions. Molecular Biology

Reports, 47(4), 3117–3131. https://doi.org/10.1007/S11033-020-05353-2

Barba, D., Hardin, J., Sadelain, M., & Gage, F. H. (1994). Development of anti-tumor

immunity following thymidine kinase-mediated killing of experimental brain

tumors. Proceedings of the National Academy of Sciences of the United States of

America, 91(10), 4348–4352. https://doi.org/10.1073/PNAS.91.10.4348

Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M., & Veiseh, O. (2022).

Engineering the next generation of cell-based therapeutics. Nature Reviews Drug

Discovery 2022 21:9, 21(9), 655–675. https://doi.org/10.1038/s41573-022-00476-6

bluebird bio Inc. (2022). bluebird bio Receives FDA Accelerated Approval for SKYSONA®

Gene Therapy for Early, Active Cerebral Adrenoleukodystrophy (CALD) - bluebird

bio, Inc. Press Release. https://investor.bluebirdbio.com/news-releases/newsrelease-details/bluebird-bio-receives-fda-accelerated-approval-skysonar-gene

Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., &

77

Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct

reprogramming of mouse somatic cells. Cell Stem Cell, 2(2), 151–159.

https://doi.org/10.1016/J.STEM.2008.01.004

Bran, G. M., Stern-Straeter, J., Hörmann, K., Riedel, F., & Goessler, U. R. (2008).

Apoptosis in Bone for Tissue Engineering. Archives of Medical Research, 39(5), 467–

482. https://doi.org/10.1016/J.ARCMED.2008.02.007

Buch, T., Heppner, F. L., Tertilt, C., Heinen, T. J. A. J., Kremer, M., Wunderlich, F. T.,

Jung, S., & Waisman, A. (2005). A Cre-inducible diphtheria toxin receptor mediates

cell lineage ablation after toxin administration. Nature Methods, 2(6), 419–426.

https://doi.org/10.1038/NMETH762

Bunn, H. F. (2013). Erythropoietin. Cold Spring Harbor Perspectives in Medicine, 3(3),

a011619. https://doi.org/10.1101/CSHPERSPECT.A011619

Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., & Yee, J. K. (1993). Vesicular

stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to

very high titer and efficient gene transfer into mammalian and nonmammalian

cells. Proceedings of the National Academy of Sciences of the United States of

America, 90(17), 8033–8037. https://doi.org/10.1073/PNAS.90.17.8033

Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum,

P., Selz, F., Hue, C., Certain, S., Casanova, J. L., Bousso, P., le Deist, F., & Fischer,

A. (2000). Gene therapy of human severe combined immunodeficiency (SCID)-X1

disease. Science (New York, N.Y.), 288(5466), 669–672.

https://doi.org/10.1126/SCIENCE.288.5466.669

Chen, A. X., Chhabra, A., Song, H. H. G., Fleming, H. E., Chen, C. S., & Bhatia, S. N.

(2020). Controlled Apoptosis of Stromal Cells to Engineer Human Microlivers.

Advanced Functional Materials, 30(48), 1910442.

https://doi.org/10.1002/ADFM.201910442

Chu, Y., Senghaas, N., Köster, R. W., Wurst, W., & Kühn, R. (2008). Novel caspase-suicide

proteins for tamoxifen-inducible apoptosis. Genesis (New York, N.Y. : 2000), 46(10),

530–536. https://doi.org/10.1002/DVG.20426

di Stasi, A., Tey, S.-K., Dotti, G., Fujita, Y., Kennedy-Nasser, A., Martinez, C., Straathof,

K., Liu, E., Durett, A. G., Grilley, B., Liu, H., Cruz, C. R., Savoldo, B., Gee, A. P.,

Schindler, J., Krance, R. A., Heslop, H. E., Spencer, D. M., Rooney, C. M., & Brenner,

M. K. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. The

New England Journal of Medicine, 365(18), 1673–1683.

https://doi.org/10.1056/NEJMOA1106152

Garbers, C., Aparicio-Siegmund, S., & Rose-John, S. (2015). The IL-6/gp130/STAT3

78

signaling axis: recent advances towards specific inhibition. Current Opinion in

Immunology, 34, 75–82. https://doi.org/10.1016/J.COI.2015.02.008

Gopaul, D. N., & van Duyne, G. D. (1999). Structure and mechanism in site-specific

recombination. Current Opinion in Structural Biology, 9(1), 14–20.

https://doi.org/10.1016/S0959-440X(99)80003-7

Gossen, M., & Bujard, H. (1992). Tight control of gene expression in mammalian cells by

tetracycline-responsive promoters. Proceedings of the National Academy of

Sciences of the United States of America, 89(12), 5547–5551.

https://doi.org/10.1073/PNAS.89.12.5547

Guicciardi, M. E., & Gores, G. J. (2009). Life and death by death receptors. FASEB

Journal : Official Publication of the Federation of American Societies for

Experimental Biology, 23(6), 1625–1637. https://doi.org/10.1096/FJ.08-111005

Guo, F., Gopaul, D. N., & van Duyne, G. D. (1997). Structure of Cre recombinase

complexed with DNA in a site-specific recombination synapse. Nature, 389(6646),

40–46. https://doi.org/10.1038/37925

Gurtu, V., Yan, G., & Zhang, G. (1996). IRES bicistronic expression vectors for efficient

creation of stable mammalian cell lines. Biochemical and Biophysical Research

Communications, 229(1), 295–298. https://doi.org/10.1006/BBRC.1996.1795

Hacein-Bey-Abina, S., Pai, S.-Y., Gaspar, H. B., Armant, M., Berry, C. C., Blanche, S.,

Bleesing, J., Blondeau, J., de Boer, H., Buckland, K. F., Caccavelli, L., Cros, G., de

Oliveira, S., Fernández, K. S., Guo, D., Harris, C. E., Hopkins, G., Lehmann, L. E.,

Lim, A., … Thrasher, A. J. (2014). A modified γ-retrovirus vector for X-linked severe

combined immunodeficiency. The New England Journal of Medicine, 371(15), 1407–

1417. https://doi.org/10.1056/NEJMOA1404588

Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., le Deist, F., Wulffraat, N., McIntyre,

E., Radford, I., Villeval, J.-L., Fraser, C. C., Cavazzana-Calvo, M., & Fischer, A.

(2003). A serious adverse event after successful gene therapy for X-linked severe

combined immunodeficiency. The New England Journal of Medicine, 348(3), 255–

256. https://doi.org/10.1056/NEJM200301163480314

Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N.,

Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., Sorensen, R., Forster,

A., Fraser, P., Cohen, J. I., de Saint Basile, G., Alexander, I., Wintergerst, U.,

Frebourg, T., Aurias, A., … Cavazzana-Calvo, M. (2003). LMO2-associated clonal T

cell proliferation in two patients after gene therapy for SCID-X1. Science (New York,

N.Y.), 302(5644), 415–419. https://doi.org/10.1126/SCIENCE.1088547

Hanada, K. I., Tsunoda, R., & Hamada, H. (1996). GM-CSF-induced in vivo expansion of

79

splenic dendritic cells and their strong costimulation activity. Journal of Leukocyte

Biology, 60(2), 181–190. https://doi.org/10.1002/JLB.60.2.181

Haramoto, Y., Onuma, Y., Mawaribuchi, S., Nakajima, Y., Aiki, Y., Higuchi, K., Shimizu,

M., Tateno, H., Hirabayashi, J., & Ito, Y. (2020). A technique for removing

tumourigenic pluripotent stem cells using rBC2LCN lectin. Regenerative Therapy,

14, 306–314. https://doi.org/10.1016/J.RETH.2020.03.017

Hasegawa, M., Kawai, K., Mitsui, T., Taniguchi, K., Monnai, M., Wakui, M., Ito, M.,

Suematsu, M., Peltz, G., Nakamura, M., & Suemizu, H. (2011). The reconstituted

“humanized liver” in TK-NOG mice is mature and functional. Biochemical and

Biophysical Research Communications, 405(3), 405–410.

https://doi.org/10.1016/J.BBRC.2011.01.042

Henkler, F., Behrle, E., Dennehy, K. M., Wicovsky, A., Peters, N., Warnke, C., Pfizenmaier,

K., & Wajant, H. (2005). The extracellular domains of FasL and Fas are sufficient

for the formation of supramolecular FasL-Fas clusters of high stability. The Journal

of Cell Biology, 168(7), 1087–1098. https://doi.org/10.1083/JCB.200501048

Hosokawa, N., Hara, Y., & Mizushima, N. (2006). Generation of cell lines with

tetracycline-regulated autophagy and a role for autophagy in controlling cell size.

FEBS Letters, 580(11), 2623–2629. https://doi.org/10.1016/j.febslet.2006.04.008

Inoue, B. (2001). Apoptosis : Its Biological Functions and Molecular Mechanism. Bulletin

of Kawasaki College of Allied Health Professions, 9–18.

Iuliucci, J. D., Oliver, S. D., Morley, S., Ward, C., Ward, J., Dalgarno, D., Clackson, T., &

Berger, H. J. (2001). Intravenous safety and pharmacokinetics of a novel dimerizer

drug, AP1903, in healthy volunteers. Journal of Clinical Pharmacology, 41(8), 870–

879. https://doi.org/10.1177/00912700122010771

Jainchill, J. L., Aaronson, S. A., & Todaro, G. J. (1969). Murine sarcoma and leukemia

viruses: assay using clonal lines of contact-inhibited mouse cells. Journal of Virology,

4(5), 549–553. https://doi.org/10.1128/JVI.4.5.549-553.1969

Kamusheva, M., & Milushewa, P. (2021). Rare disease patients’ needs: an up-to-date

analysis and future directions. Pharmacia, 68(4), 763–770.

https://doi.org/10.3897/pharmacia.68.e73240

Kaneko, E., Kawahara, M., Ueda, H., & Nagamune, T. (2012). Growth control of

genetically modified cells using an antibody/c-Kit chimera. Journal of Bioscience

and Bioengineering, 113(5), 641–646. https://doi.org/10.1016/J.JBIOSC.2011.12.005

Kawahara, M., Hitomi, A., & Nagamune, T. (2014). Antigen-responsive regulation of Cell

motility and migration via the signalobodies based on c-Fms and c-Mpl.

Biotechnology Progress, 30(2), 411–417. https://doi.org/10.1002/BTPR.1861

80

Kawahara, M., Kimura, H., Ueda, H., & Nagamune, T. (2004). Selection of genetically

modified

cell population

using

hapten-specific antibody/receptor chimera.

Biochemical and Biophysical Research Communications, 315(1), 132–138.

https://doi.org/10.1016/j.bbrc.2004.01.030

Kawahara, M., Natsume, A., Terada, S., Kato, K., Tsumoto, K., Kumagai, I., Miki, M.,

Mahoney, W., Ueda, H., & Nagamune, T. (2001). Replacing factor-dependency with

that for lysozyme: affordable culture of IL-6-dependent hybridoma by transfecting

artificial cell surface receptor. Biotechnology and Bioengineering, 74(5), 416–423.

https://doi.org/10.1002/BIT.1132

Kawahara, M., Ogo, Y., Ueda, H., & Nagamune, T. (2004). Improved growth response of

antibody/receptor chimera attained by the engineering of transmembrane domain.

Protein Engineering, Design & Selection : PEDS, 17(10), 715–719.

https://doi.org/10.1093/PROTEIN/GZH088

Kawahara, M., Shimo, Y., Sogo, T., Hitomi, A., Ueda, H., & Nagamune, T. (2008).

Antigen-mediated migration of murine pro-B Ba/F3 cells via an antibody/receptor

chimera. Journal of Biotechnology, 133(1), 154–161.

https://doi.org/10.1016/J.JBIOTEC.2007.09.009

Kawahara, M., Ueda, H., Morita, S., Tsumoto, K., Kumagai, I., & Nagamune, T. (2003).

Bypassing antibiotic selection: positive screening of genetically modified cells with

an antigen-dependent proliferation switch. Nucleic Acids Research, 31(7), e32.

https://doi.org/10.1093/nar/gng032

Kawahara, M., Ueda, H., Tsumoto, K., Kumagai, I., & Nagamune, T. (2004). AMEGA:

Antigen-mediated genetically modified cell amplification. Journal of Immunological

Methods, 284(1–2), 187–194. https://doi.org/10.1016/j.jim.2003.10.007

Kerr, J. F. R., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological

phenomenon with wide-ranging implications in tissue kinetics. British Journal of

Cancer, 26(4), 239–257. https://doi.org/10.1038/BJC.1972.33

Kimbrel, E. A., & Lanza, R. (2020). Next-generation stem cells — ushering in a new era

of cell-based therapies. Nature Reviews Drug Discovery 2020 19:7, 19(7), 463–479.

https://doi.org/10.1038/s41573-020-0064-x

Koopman, G., Reutelingsperger, C., & Kuijten, G. (1994). Annexin V for flow cytometric

detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood,

84(5), 1415–1420. https://doi.org/https://doi.org/10.1182/blood.V84.5.1415.1415

Lee, S., Kaku, Y., Inoue, S., Nagamune, T., & Kawahara, M. (2016). Growth signalobody

selects functional intrabodies in the mammalian cytoplasm. Biotechnology Journal,

11(4), 565–573. https://doi.org/10.1002/BIOT.201500364

81

Liu, W., Kawahara, M., Ueda, H., & Nagamune, T. (2008). Construction of a fluoresceinresponsive chimeric receptor with strict ligand dependency. Biotechnology and

Bioengineering, 101(5), 975–984. https://doi.org/10.1002/BIT.21961

Loonstra, A., Vooijs, M., Beverloo, H. B., Allak, B. al, van Drunen, E., Kanaar, R., Berns,

A., & Jonkers, J. (2001). Growth inhibition and DNA damage induced by Cre

recombinase in mammalian cells. Proceedings of the National Academy of Sciences

of the United States of America, 98(16), 9209–9214.

https://doi.org/10.1073/PNAS.161269798

Lozzio, C., & Lozzio, B. (1975). Human chronic myelogenous leukemia cell-line with

positive Philadelphia chromosome.

https://ashpublications.org/blood/article-abstract/45/3/321/160285

Maghsoudi, N., Zakeri, Z., & Lockshin, R. A. (2012). Programmed cell death and

apoptosis--where it came from and where it is going: from Elie Metchnikoff to the

control of caspases - PubMed. Experimental Oncology, 34(3), 146–152.

https://pubmed.ncbi.nlm.nih.gov/23069998/

Markowska, A., Kaysiewicz, J., Markowska, J., & Huczyński, A. (2019). Doxycycline,

salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorganic &

Medicinal Chemistry Letters, 29(13), 1549–1554.

https://doi.org/10.1016/J.BMCL.2019.04.045

Matsuda, T., & Cepko, C. L. (2007). Controlled expression of transgenes introduced by in

vivo electroporation. Proceedings of the National Academy of Sciences of the United

States of America, 104(3), 1027–1032. https://doi.org/10.1073/PNAS.0610155104

Matsumoto, Y., Yamaguchi, Y., Hamachi, M., Nonomura, K., Muramatsu, Y., Yoshida, H.,

& Miura, M. (2020). Apoptosis is involved in maintaining the character of the

midbrain and the diencephalon roof plate after neural tube closure. Developmental

Biology, 468(1–2), 101–109. https://doi.org/10.1016/J.YDBIO.2020.09.015

Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E., & Hayakawa, T. (2000). IRESdependent second gene expression is significantly lower than cap-dependent first

gene expression in a bicistronic vector. Molecular Therapy : The Journal of the

American Society of Gene Therapy, 1(4), 376–382.

https://doi.org/10.1006/MTHE.2000.0050

Morita, S., Kojima, T., & Kitamura, T. (2000). Plat-E: an efficient and stable system for

transient packaging of retroviruses. Gene Therapy, 7(12), 1063–1066.

https://doi.org/10.1038/SJ.GT.3301206

Nabekura, T., Otsu, M., Nagasawa, T., Nakauchi, H., & Onodera, M. (2006). Potent

vaccine therapy with dendritic cells genetically modified by the gene-silencing82

resistant retroviral vector GCDNsap. Molecular Therapy, 13(2), 301–309.

https://doi.org/10.1016/J.YMTHE.2005.09.021

Nagree, M. S., López-Vásquez, L., & Medin, J. A. (2015). Towards in vivo amplification:

Overcoming hurdles in the use of hematopoietic stem cells in transplantation and

gene therapy. World Journal of Stem Cells, 7(11), 1233–1250.

https://doi.org/10.4252/WJSC.V7.I11.1233

Nakabayashi, H., Aoyama, S., Kawahara, M., & Nagamune, T. (2016). Differentiation

signalobody: Demonstration of antigen-dependent osteoclast differentiation from a

progenitor cell line. Journal of Bioscience and Bioengineering, 122(3), 357–363.

https://doi.org/10.1016/J.JBIOSC.2016.02.010

Otto, K. G., Jin, L., Spencer, D. M., & Anthony Blau, C. (2001). Cell proliferation through

forced engagement of c-Kit and Flt-3. Blood, 97(11), 3662–3664.

https://doi.org/10.1182/BLOOD.V97.11.3662

Palacios, R., & Steinmetz, M. (1985). Il-3-dependent mouse clones that express B-220

surface antigen, contain Ig genes in germ-line configuration, and generate B

lymphocytes in vivo. Cell, 41(3), 727–734.

https://doi.org/10.1016/S0092-8674(85)80053-2

Parr, C. J. C., Katayama, S., Miki, K., Kuang, Y., Yoshida, Y., Morizane, A., Takahashi,

J., Yamanaka, S., & Saito, H. (2016). MicroRNA-302 switch to identify and

eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 6,

32532. https://doi.org/10.1038/SREP32532

Pihkala, P., Kawahara, M., Ueda, H., & Nagamune, T. (2004). An antigen-mediated

selection system for mammalian cells that produce glycosylated single-chain Fv.

Biochemical and Biophysical Research Communications, 324(4), 1165–1172.

https://doi.org/10.1016/J.BBRC.2004.09.178

Ramos, C. A., Asgari, Z., Liu, E., Yvon, E., Heslop, H. E., Rooney, C. M., Brenner, M. K.,

& Dotti, G. (2010). An inducible caspase 9 suicide gene to improve the safety of

mesenchymal stromal cell therapies. Stem Cells (Dayton, Ohio), 28(6), 1107–1115.

https://doi.org/10.1002/STEM.433

Scherer, W. F. (1954). Studies on the Propagation in Vitro of Poliomyelitis Viruses. The

Journal of Immunology, 73(5), 331–336.

Schmid, I., Uittenbogaart, C. H., Keld, B., & Giorgi, J. v. (1994). A rapid method for

measuring apoptosis and dual-color immunofluorescence by single laser flow

cytometry. Journal of Immunological Methods, 170(2), 145–157.

https://doi.org/10.1016/0022-1759(94)90390-5

Slee, E. A., Zhu, H., Chow, S. C., MacFarlane, M., Nicholson, D. W., & Cohen, G. M.

83

(1996). Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK)

inhibits apoptosis by blocking the processing of CPP32. The Biochemical Journal,

315 ( Pt 1)(Pt 1), 21–24. https://doi.org/10.1042/BJ3150021

Sogo, T., Kawahara, M., Tsumoto, K., Kumagai, I., Ueda, H., & Nagamune, T. (2008).

Selective expansion of genetically modified T cells using an antibody/interleukin-2

receptor chimera. Journal of Immunological Methods, 337(1), 16–23.

https://doi.org/10.1016/J.JIM.2008.05.003

Stephen, R. L., Gustafsson, M. C. U., Jarvis, M., Tatoud, R., Marshall, B. R., Knight, D.,

Ehrenborg, E., Harris, A. L., Wolf, C. R., & Palmer, C. N. A. (2004). Activation of

peroxisome proliferator-activated receptor delta stimulates the proliferation of

human breast and prostate cancer cell lines. Cancer Research, 64(9), 3162–3170.

https://doi.org/10.1158/0008-5472.CAN-03-2760

Straathof, K. C., Pulè, M. A., Yotnda, P., Dotti, G., Vanin, E. F., Brenner, M. K., Heslop,

H. E., Spencer, D. M., & Rooney, C. M. (2005). An inducible caspase 9 safety switch

for T-cell therapy. Blood, 105(11), 4247–4254. https://doi.org/10.1182/BLOOD-200411-4564

Suda, N., Itoh, T., Nakato, R., Shirakawa, D., Bando, M., Katou, Y., Kataoka, K.,

Shirahige, K., Tickle, C., & Tanaka, M. (2014). Dimeric combinations of MafB, cFos

and cJun control the apoptosis-survival balance in limb morphogenesis.

Development (Cambridge, England), 141(14), 2885–2894.

https://doi.org/10.1242/DEV.099150

Sun, W., Shi, Q., Zhang, H., Yang, K., Ke, Y., Wang, Y., & Qiao, L. (2019). Advances in the

Techniques and Methodologies of Cancer Gene Therapy. Discovery Medicine,

27(146), 45–55.

Takashina, T., & Nakayama, M. (2007). Modifications enhance the apoptosis-inducing

activity of FADD. Molecular Cancer Therapeutics, 6(6), 1793–1803.

https://doi.org/10.1158/1535-7163.MCT-06-0522

Tanaka, K., Kawahara, M., Ueda, H., & Nagamune, T. (2009). Selection and growth

regulation of genetically modified cells with hapten-specific antibody/receptor

tyrosine kinase chimera. Biotechnology Progress, 25(4), 1138–1145.

https://doi.org/10.1002/BTPR.185

Tang, R., & Xu, Z. (2020). Gene therapy: a double-edged sword with great powers.

Molecular and Cellular Biochemistry, 474(1–2), 73–81.

https://doi.org/10.1007/S11010-020-03834-3/TABLES/2

Thomis, D. C., Marktel, S., Bonini, C., Traversari, C., Gilman, M., Bordignon, C., &

Clackson, T. (2001). A Fas-based suicide switch in human T cells for the treatment

84

of graft-versus-host disease. Blood, 97(5), 1249–1257.

https://doi.org/10.1182/BLOOD.V97.5.1249.H8001249_1249_1257

Tsiftsoglou, A. S. (2021). Erythropoietin (EPO) as a Key Regulator of Erythropoiesis,

Bone

Remodeling

and

Endothelial

Transdifferentiation

of

Multipotent

Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells,

10(8), 2140. https://doi.org/10.3390/CELLS10082140

Tsukamoto, T., Sogo, T., Ueyama, T., Nakao, S., Harada, Y., Ihara, D., Akagi, Y., Kida, Y.

S., Hasegawa, K., Nagamune, T., Kawahara, M., & Kawamura, T. (2020). Chimeric

G-CSF Receptor-Mediated STAT3 Activation Contributes to Efficient Induction of

Cardiomyocytes from Mouse Induced Pluripotent Stem Cells. Biotechnology

Journal, 15(2), e1900052. https://doi.org/10.1002/BIOT.201900052

Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., & Hillen, W. (2000).

Exploring the sequence space for tetracycline-dependent transcriptional activators:

novel mutations yield expanded range and sensitivity. Proceedings of the National

Academy of Sciences of the United States of America, 97(14), 7963–7968.

https://doi.org/10.1073/PNAS.130192197

Verrou, C., Zhang, Y., Zürn, C., Schamel, W. W. A., & Reth, M. (1999). Comparison of the

tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biological

Chemistry, 380(12), 1435–1438. https://doi.org/10.1515/BC.1999.184

Wang, Y., Pang, J., Wang, Q., Yan, L., Wang, L., Xing, Z., Wang, C., Zhang, J., & Dong, L.

(2021). Delivering Antisense Oligonucleotides across the Blood-Brain Barrier by

Tumor Cell-Derived Small Apoptotic Bodies. Advanced Science (Weinheim, Baden-

Wurttemberg, Germany), 8(13), 2004929. https://doi.org/10.1002/ADVS.202004929

Westerman, K. A., & Leboulch, P. (1996). Reversible immortalization of mammalian cells

mediated by retroviral transfer and site-specific recombination. Proceedings of the

National Academy of Sciences of the United States of America, 93(17), 8971–8976.

https://doi.org/10.1073/PNAS.93.17.8971

Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O., & Ihle, J. N.

(1993). JAK2 associates with the erythropoietin receptor and is tyrosine

phosphorylated and activated following stimulation with erythropoietin. Cell, 74(2),

227–236. https://doi.org/10.1016/0092-8674(93)90414-L

Wunderlich, F. T., Wildner, H., Rajewsky, K., & Edenhofer, F. (2001). New variants of

inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits

enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Research,

29(10), E47. https://doi.org/10.1093/NAR/29.10.E47

Xu, R., Kume, A., Matsuda, K. M., Ueda, Y., Kodaira, H., Ogasawara, Y., Urabe, M., Kato,

85

I., Hasegawa, M., & Ozawa, K. (1999). A Selective Ampli®er Gene for TamoxifenInducible Expansion of Hematopoietic Cells. The Journal of Gene Medicine, 1(4),

236–244. https://doi.org/10.1002/(SICI)1521-2254(199907/08)1:4

Yoshida, R., Kawahara, M., & Nagamune, T. (2015). Domain structure of growth

signalobodies critically affects the outcome of antibody library selection. Journal of

Biochemistry, 157(6), 497–506. https://doi.org/10.1093/JB/MVV008

Zhang, Y., Riesterer, C., Ayrall, A. M., Sablitzky, F., Littlewood, T. D., & Reth, M. (1996).

Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids

Research, 24(4), 543–548. https://doi.org/10.1093/NAR/24.4.543

Zhao, D., Tao, W., Li, S., Chen, Y., Sun, Y., He, Z., Sun, B., & Sun, J. (2021). Apoptotic

body-mediated intercellular delivery for enhanced drug penetration and whole

tumor destruction. Science Advances, 7(16), eabg0880.

https://doi.org/https://doi.org/10.1126/sciadv.abg0880

Zheng, L., Njauw, C. N., & Martins-Green, M. (2008). A one-plasmid conditional colorswitching transgenic system for multimodal bioimaging. Transgenic Research,

17(4), 741–747. https://doi.org/10.1007/S11248-007-9160-5

Zhu, Z., Ma, B., Homer, R. J., Zheng, T., & Elias, J. A. (2001). Use of the tetracyclinecontrolled transcriptional silencer (tTS) to eliminate transgene leak in inducible

overexpression transgenic mice. The Journal of Biological Chemistry, 276(27),

25222–25229. https://doi.org/10.1074/JBC.M101512200

久保允人. (2010). サイトカインと受容体, シグナル伝達機構. 臨床検査, 54(6), 585–592.

https://doi.org/https://doi.org/10.11477/mf.1542102308

戸澗一孔. (2018). (RS-1027)ゲノム解析と超希少疾患. ARCリポート, 37.

戸邊雅則. (2018). 創薬化学の側面から見た低分子医薬の将来像 ―低分子から中分子への広

がり―. 医薬産業政策研究所

リサーチペーパー・シリーズ No. 72, 78.

日本製薬工業協会. (2016). ビジョン2『世界80億人に革新的な医薬品を届ける』. 製薬協 産

業ビジョン2025, 60.

経済産業省. (2018). 平成29年度「我が国におけるデータ駆動型社会に係る基盤整備 (「根

本治療の実現」に向けた適切な支援のあり方の調査)報告書」. 再生医療関連報告書,

164.

86

発表論文

Tone, Y., Kawahara, M., Kawaguchi, D., Ueda, H., & Nagamune, T. (2013). Death signalobody:

inducing conditional cell death in response to a specific antigen. Human gene therapy methods, 24(3),

141–150. https://doi.org/10.1089/hgtb.2012.147

上記論文は 第 2 章に該当

Tone, Y., Kawahara, M., Hayashi, J., & Nagamune, T. (2013). Cell fate conversion by conditionally

switching the signal-transducing domain of signalobodies. Biotechnology and bioengineering, 110(12),

3219–3226. https://doi.org/10.1002/bit.24985

上記論文は 第 3 章に該当

以上

87

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る