リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structural determination of the sheath-forming polysaccharide of Sphaerotilus montanus using thiopeptidoglycan lyase which recognizes the 1,4 linkage between α-D-GalN and β-D-GlcA」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structural determination of the sheath-forming polysaccharide of Sphaerotilus montanus using thiopeptidoglycan lyase which recognizes the 1,4 linkage between α-D-GalN and β-D-GlcA

Kashiwabara Daisuke Kondo Keiko 00707474 Usami Ryoji Kan Daisuke Kawamura Izuru Kawasaki Yuta Sato Michio 00588775 Nittami Tadashi 20377089 Suzuki Ichiro 90303081 Katahira Masato 70211844 Takeda Minoru 40247507 横浜国立大学

2021.05.06

概要

Sphaerotilus natans is a filamentous sheath-forming bacterium commonly found in activated sludge. Its sheath is assembled from a thiolic glycoconjugate called thiopeptidoglycan. S. montanus ATCC-BAA-2725 is a sheath-forming member of stream biofilms, and its sheath is morphologically similar to that of S. natans. However, it exhibits heat susceptibility, which distinguishes it from the S. natans sheath. In this study, chemical composition and solid-state NMR analyses suggest that the S. montanus sheath is free of cysteine, indicating that disulfide linkage is not mandatory for sheath formation. The S. montanus sheath was successfully solubilized by N-acetylation, allowing solution-state NMR analysis to determine the sugar sequence. The sheath was susceptible to thiopeptidoglycan lyase prepared from the thiopeptidoglycan-assimilating bacterium, Paenibacillus koleovorans. The reducing ends of the enzymatic digests were labeled with 4-aminobenzoic acid ethyl ester, followed by HPLC. Two derivatives were detected, and their structures were determined. We found that the sheath has no peptides and is assembled as follows: [→4)-β-D-GlcA-(1→4)-β-D-Glc-(1→3)-β-D-GalNAc-(1→4)-α-D-GalNAc-(1→4)-α-D-GalN-(1→]n (β-D-Glc and α-D-GalNAc are stoichiometrically and substoichiometrically 3-O-acetylated, respectively). Thiopeptidoglycan lyase was thus confirmed to cleave the 1,4 linkage between α-D-GalN and β-D-GlcA, regardless of the peptide moiety. Furthermore, vital fluorescent staining of the sheath demonstrated that elongation takes place at the tips, as with the S. natans sheath.

この論文で使われている画像

参考文献

18

[1] W.L. van Veen, E.G. Mulder, M.H. Deinema, The Sphaerotilus-Leptothrix group of bacteria,

19

20

21

22

23

24

25

26

Microbiol. Rev. 42 (1978) 329−356.

[2] D. Jenkins, M.G. Richard, G.T. Daigger, Manual on the causes and control of activated sludge

bulking and forming, second ed., Lewis Publishers, Chelsea, Michigan, 1993.

[3] A.M. Martins, K. Pagilla, J.J. Heijnen, M.C. van Loosdrecht, Filamentous bulking sludge—a

critical review, Water Res. 38 (2004) 793−817.

[4] A.H. Romano, J.P. Peloquin, Composition of the sheath of Sphaerotilus natans, J. Bacteriol. 86

(1963) 252−258.

[5] K. Kondo, M. Takeda, W. Ejima, Y. Kawasaki, T. Umezu, M. Yamada, J. Koizumi, T. Mashima,

19

M. Katahira, Study of a novel glycoconjugate, thiopeptidoglycan, and a novel polysaccharide

lyase, thiopeptidoglycan lyase, Int. J. Biol. Macromol. 48 (2011) 256−262.

[6] A.H. Romano, D.J. Geason, Pattern of sheath synthesis in Sphaerotilus natans, J. Bacteriol. 88

(1964) 1145−1150.

[7] M. Takeda, T. Umezu, Y. Kawasaki, S. Shimura, K. Kondo, J. Koizumi, A spatial relationship

between sheath elongation and cell proliferation in Sphaerotilus natans, Biosci. Biotechnol.

Biochem. 76 (2012) 2357−2359.

[8] P.L. Siering, W.C. Ghiorse, Phylogeny of the Sphaerotilus-Leptothrix group inferred from

morphological comparisons, genomic fingerprinting, and 16S ribosomal DNA sequence analyses,

10

Int. J. Syst. Bacteriol. 46 (1996) 173−182.

11

[9] P.L. Siering, W.C. Ghiorse, Development and application of 16S rRNA-targeted probes for

12

detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples, Appl.

13

Environ. Microbiol. 63 (1997) 644−651.

14

[10] M. Takeda, Y. Kawasaki, T. Umezu, S. Shimura, M. Hasegawa, J. Koizumi, Patterns of sheath

15

elongation, cell proliferation, and manganese(II) oxidation in Leptothrix cholodnii, Arch.

16

Microbiol. 194 (2012) 667−673.

17

[11] E. Gridneva, E. Chernousova, G. Dubinina, V. Akimov, J. Kuever, E. Detkova, M. Grabovich,

18

Taxonomic investigation of representatives of the genus Sphaerotilus: descriptions of

19

Sphaerotilus montanus sp. nov., Sphaerotilus hippei sp. nov., Sphaerotilus natans subsp. natans

20

subsp. nov. and Sphaerotilus natans subsp. sulfidivorans subsp. nov., and an emended

21

description of the genus Sphaerotilus, Int. J. Syst. Evol. Microbiol. 61 (2011) 916−925.

22

23

[12] M.A. Nott, H.E. Driscoll, M. Takeda, M. Vangala, S.R. Corsi, S. W. Tighe, Advanced biofilm

analysis in streams receiving organic deicer runoff. PLoS One. 15 (2020) e0227567.

24

[13] T. Suzuki, T. Kanagawa, Y. Kamagata, Identification of a gene essential for sheathed structure

25

formation in Sphaerotilus natans, a filamentous sheathed bacterium, Appl. Environ. Microbiol.

26

68 (2002) 365–371.

20

[14] M. Takeda, K. Nishina, Y. Hanaoka, M. Higo, M. Terui, I. Suzuki, J. Koizumi, A novel gene

encoding an enzyme that degrades a polysaccharide from the sheath of Sphaerotilus natans,

Biosci. Biotechnol. Biochem. 67 (2003) 2300−2303.

[15] M. Takeda, K. Iohara, S. Shinmaru, I. Suzuki, J. Koizumi, Purification and properties of an

enzyme capable of degrading the sheath of Sphaerotilus natans, Appl. Environ. Microbiol. 66

(2000) 4998−5004.

[16] M. Takeda, Y. Kamagata, S. Shinmaru, T. Nishiyama, J. Koizumi, Paenibacillus koleovorans

sp. nov., able to grow on the sheath of Sphaerotilus natans, Int. J. Syst. Evol. Microbiol. 52

(2002) 1597−1601.

10

11

[17] M. Takeda, F. Nakano, T. Nagase, K. Iohara, J. Koizumi, Isolation and chemical composition of

the sheath of Sphaerotilus natans, Biosci. Biotechnol. Biochem. 62 (1998) 1138−1143.

12

[18] R.L. Taylor, H. E. Conrad, Stoichiometric depolymerization of polyuronides and

13

glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-

14

activated carboxyl groups, Biochemistry 11 (1972) 1383−1388.

15

[19] R.K. Merkle, I. Poppe, Carbohydrate composition analysis of glycoconjugates by gas-liquid

16

chromatography/mass spectrometry, in: W.J. Lennarz, G.W. Hart (Eds.), Methods in Enzymology

17

Vol. 230, Academic Press, San Diego, 1994, pp. 1–15.

18

19

[20] T.M. Filisetti-Cozzi, N.C. Carpita, Measurement of uronic acids without interference from

neutral sugars, Anal. Biochem. 197 (1991) 157−162.

20

[21] G.J. Gerwig, J.P. Kamerling, J.F.G. Vliegenthart, Determination of the D and L configuration of

21

neutral monosaccharides by high-resolution capillary G.L.C., Carbohydr. Res. 62 (1978)

22

349−357.

23

[22] G.J. Gerwig, J.P. Kamerling, J.F.G. Vliegenthart, Determination of the absolute configuration of

24

monosaccharides in complex carbohydrates by capillary G.L.C., Carbohydr. Res. 77 (1979) 1−7.

25

[23] E.H. Armbruster, Improved technique for isolation and identification of Sphaerotilus, Appl.

26

Microbiol. 17 (1969) 320–321.

21

[24] M. Takeda, T. Nakamori, M. Hatta, H. Yamada, J. Koizumi J, Structure of the polysaccharide

isolated from the sheath of Sphaerotilus natans, Int. J. Biol. Macromol. 33 (2003) 245−250.

[25] M. Takeda, K. Kondo, R. Tominaga, H. Mori, M. Kato, R. Usami, T. Murakami, K. Ueda, I.

Suzuki, M. Katahira, Aggregability of β(1→4)-linked glucosaminoglucan originating from a

sulfur-oxidizing bacterium Sphaerotilus natans, Biosci. Biotechnol. Biochem. 84 (2020)

2085−2095.

10

[26] J.F. Hoeniger, H.D. Tauschel, J.L. Stokes, The fine structure of Sphaerotilus natans, Can. J.

Microbiol. 19 (1973) 309−313.

[27] D. Emerson, W.C. Ghiorse, Ultrastructure and chemical composition of the sheath of Leptothrix

discophora SP-6, J. Bacteriol. 175 (1993) 7808−7818.

11

[28] T. Kunoh, K. Morinaga, S. Sugimoto, S. Miyazaki, M. Toyofuku, K. Iwasaki, N. Nomura, A.S

12

Utada, Polyfunctional nanofibril appendages mediate attachment, filamentation, and filament

13

adaptability in Leptothrix cholodnii, ACS Nano 14 (2020) 5288−5297.

14

[29] M. Takeda, K. Kondo, M. Yamada, J. Koizumi, T. Mashima, A. Matsugami, M. Katahira,

15

Solubilization and structural determination of a glycoconjugate which is assembled into the

16

sheath of Leptothrix cholodnii, Int. J. Biol. Macromol. 46 (2010) 206−211.

17

18

[30] D. Emerson, W.C. Ghiorse, Role of disulfide bonds in maintaining the structural integrity of the

sheath of Leptothrix discophora SP-6. J. Bacteriol. 175 (1993) 7819−7827.

19

[31] D.J. Little, G. Li., C. Ing, B.R. DiFrancesco, N.C. Bamford, H Robinson, M. Nitz, R. Pomès,

20

P.L. Howell, Modification and periplasmic translocation of the biofilm exopolysaccharide poly-

21

β-1,6-N-acetyl-D-glucosamine, PNAS 111 (2014) 11013–11018.

22

23

[32] M. Pauly, V. Ramírez, New insights into wall polysaccharide O-acetylation, Front. Plant Sci. 9

(2018) 1210.

24

22

Table 1. 1H and 13C resonance assignments (δ in ppm)

Residue

α-GalNAc (A)

α-GalNAc (B)

β-GlcA (C)

β-GalNAc (D)

β-Glc (E)

Nucleus

6 (6′)

NAc

4.00

4.05

3.95

3.65 (3.69)

2.05

96.0

52.4

69.9

79.3

74.6

62.8

24.0, 177.4

4.93a

4.17

4.16

4.23

4.37

3.62 (3.86)

2.07

101.2

53.0

70.1

78.2

73.0

63.3

24.0, 177.0

4.78

3.53

4.39

3.85

4.20

102.9

72.8

69.6

75.0

76.7

178.3

4.76

4.03

3.93

4.16

3.69

3.77 (3.81)

2.01

104.9

54.3

82.7

70.9

77.4

63.8

24.0, 177.6

4.52

3.35

3.63

3.62

3.55

3.81 (3.91)

106.8

75.4

76.8

81.3

77.4

62.8

13

4.29

13

5.10

13

13

1 (3J1,2, Hz)

13

(8.4)

(6.6)

(7.2)

A minor signal was detected at 4.98 ppm.

23

Table 2. 1H and 13C resonance assignments of ABEE derivatives (δ in ppm)

Derivative I

Sugar

Nucleus

residue

β-ΔGlcA

13

(dC)

β-Glc

(E)

β-GalNAc

(D)

α-GalNAc

(B)

α-GalNAc

(Ar)

Nonsugar

residue

ABEE

6 (6′)

NAc

OAc

5.16

3.86

4.34

5.71

101.5

67.9

65.1

110.3

147.2

ND

4.58

3.55

4.94

4.06

3.60

3.93 (3.79)

2.09

106.8

74.0

77.8

75.3

77.7

62.7

23.2, 176.7

4.70

3.99

3.89

4.18

3.65

3.80 (3.80)

1.98

104.6

54.1

83.0

70.6

77.3

63.5

25.1, 177.6

5.04

4.13

3.84

4.00

3.87

3.69 (3.66)

2.04

101.4

52.7

70.3

78.0

74.0

64.0

24.7, 177.1

3.59

3.70

4.09

3.91

3.96

3.65 (3.65)

45.3

53.5

71.6

80.8

73.8

64.8

13

13

13

13

Nucleus

CH2

CH3

C=O

2, 6

3, 5

4.35

1.37

7.89

6.81

7.91

64.5

16.3

171.9

121.1

115.0

134.3

154.7

13

Derivative II

Sugar

Nucleus

residue

β-ΔGlcA

13

(dC)

β-Glc

(E)

β-GalNAc

(D)

α-GalNAc

(B)

α-GalNAc

(Ar)

Nonsugar

residue

ABEE

6 (6′)

NAc

OAc

5.17

3.88

4.35

5.82

101.8

67.8

65.0

112.3

145.6

170.0

4.60

3.53

4.94

4.04

3.59

3.92 (3.79)

2.08

106.6

74.0

77.9

75.6

77.5

62.7

23.2, 176.7

4.48

3.89

4.01

4.18

3.59

3.77 (3.67)

2.01

104.5

54.3

82.2

70.2

77.0

63.5

25.0, 177.6

5.06

4.36

4.90

3.96

3.81

3.68 (3.60)

1.97

2.14

101.1

50.7

72.6

76.1

73.9

63.6

24.5, 176.8

22.9, 175.9

3.61

3.73

4.11

3.94

3.97

3.64 (3.64)

44.9

53.3

70.6

80.5

73.6

64.8

13

13

13

13

Nucleus

CH2

CH3

C=O

2, 6

3, 5

4.32

1.35

7.89

6.82

7.92

4.32

64.4

16.4

172.0

121.4

115.2

134.5

154.4

13

ND: Not detected.

24

Figure legends

Fig. 1. Micrographs of the filament (a, c, e) and purified sheath (b, d, f) of S. montanus. S. montanus

filaments grown on glucose-free medium were observed using phase-contrast microscopy (a). The

suspension of the sheath was observed using phase-contrast microscopy (b). The membrane filter

attached to the filament (c) or sheath (b) was fixed and metal coated for observation using scanning

electron microscopy. The filament (e) or sheath (f) airdried on a silicon wafer was subjected to

scanning probe microscopy.

10

11

Fig. 2. 13C cross polarization/magic angle spinning spectra of the Sphaerotilus sheaths (a, b) and the

12

derivatives of the S. montanus sheath (c, d, e). The lyophilized samples were subjected to analysis at

13

25 °C. The spectra of the purified sheaths of S. montanus (a) and S. natans (b) are compared in the

14

left column. In the right column, the spectra of de-O-acetylated (c), de-O-N-acetylated (d), and N-

15

acetylated (e) derivatives of the S. montanus sheath are shown. Important signals are indicated by

16

C=O (carbonyl carbon signal), Anomeric (anomeric carbon signal) and Ac (methyl carbon signal due

17

to acetyl group).

18

19

Fig. 3. 1D-1H NMR spectrum of the N-acetylated derivative of the S. montanus sheath. The solution

20

(approximately 5 mg/mL) of the N-acetylated derivative was subjected to analysis at 30 °C. Important

21

signals are indicated by arrows. Note that a weak unidentified signal (X-H1) was detected in the

22

anomeric proton region. Relative intensities are indicated in the parentheses.

23

24

Fig. 4. 1D-1H NMR spectra of the ABEE derivatives. The solutions (approximately 5 mg/mL) of the

25

ABEE derivatives (I and II) purified by HPLC were subjected to 1D-1H NMR analysis. Whole spectra

26

(a) and partial spectra of the acetyl proton region (b) of both derivatives are shown. Note that three

27

and four major signals are detected in the acetyl proton region of derivatives I and II, respectively.

25

Fig. 5. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry spectra

derivatives I (a) and II (b). Spectra were acquired using a DHB matrix solution in reflectron mode

(positive). Possible ions for major signals are indicated.

Fig. 6. Edited heteronuclear single quantum coherence spectroscopy (a) and heteronuclear multiple

bond correlation (b) spectra of derivative I. The solution (approximately 5 mg/mL) of derivative I

was subjected to analysis using 3-(trimethylsilyl)propionic acid and acetone as internal standards.

Positive and negative heteronuclear single quantum coherence spectroscopy signals are indicated by

10

red and green contour lines, respectively. The crosspeaks identified are designated as dC1 (correlation

11

between C1 and H1 of unsaturated residue C), etc. The heteronuclear multiple bond correlation

12

signals within the carbonyl carbon (C=O) region are displayed separately. The crosspeaks identified

13

are designated as C=O/E(OAc) (correlation between C=O and O-acetyl protons of residue E), etc.

14

15

Fig. 7. Chemical structures of derivative I (a), derivative II (b), the sheath-forming polymer of S.

16

montanus (c), and the sheath-forming polymer of S. natans (d). The arrows indicate the linkage

17

cleaved by thiopeptidoglycan lyase.

18

19

Fig. 8 Comparative phase-contrast (left), epifluorescent (middle), and merged (right) images of

20

immunostained filaments of N-biotinylated S. montanus. S. montanus was N-biotinylated and then

21

cultivated. The bacterial filaments were recovered at 0 h (a) and 3 h (b) of cultivation and

22

immunostained for visualization of the sheath. The edges of the sheath are not closed (a). A cultured

23

(3 h) filament exhibited fluorescence only in the middle region (b).

24

26

10

10 μm

10 μm

11

12

13

1 μm

1 μm

14

15

16

17

18

19

2 μm

2 μm

20

21

22

Fig. 1 - Takeda - International Journal of Biological Macromolecules

23

27

Ac

C1

C1

10

11

C=O

C1

C=O

12

C1

C=O

15

18

Ac

C1

14

17

Ac

13

16

Ac

C=O

C=O

180

160

140

120 100 80

60

Chemical shift (ppm)

40

20

160

120

80

40

Chemical shift (ppm)

19

20

21

22

Ac

Fig. 2 - Takeda - International Journal of Biological Macromolecules

23

28

Acetyl signals (9.09)

HDO

Anomeric (H1)

signals

B-H1

X-H1

A-H1

(1.00)

D-H1

C-H1

5.0

E-H1

4.5

4.0

3.5

Chemical shift (ppm)

3.0

2.5

10

Fig. 3 - Takeda - International Journal of Biological Macromolecules

11

12

29

2.0

1119.4

+Na+ (m/z 1119.4), +K+ (m/z 1135.4)

ΔGlcA-Glc-GalNAc-GalNAc-GalNr-ABEE

Ac

+Na+

(m/z 961.4),

+K+

961.4

1135.4

977.3

(m/z 977.3)

m/z

1161.4

1177.4

+Na+ (m/z 1161.4), +K+ (m/z 1177.4)

ΔGlcA-Glc-GalNAc-GalNAc-GalNr-ABEE

Ac

+Na+

(m/z 1003.4),

+K+

Ac

(m/z 1019.4)

1003.4

1019.4

m/z

Fig. 4 - Takeda - International Journal of Biological Macromolecules

30

Derivative I

HDO

Olefinic signal

Methyl signal

(ABEE)

Aryl signals (ABEE)

Derivative II

HDO

Olefinic signal

Methyl signal

(ABEE)

Aryl signals (ABEE)

10

11

12

Acetyl signals

13

14

15

16

17

Derivative I

18

19

20

Derivative II

21

22

23

24

25

Fig. 5 - Takeda - International Journal of Biological Macromolecules

26

31

Fig. 6 - Takeda - International Journal of Biological Macromolecules

32

10

11

12

13

β-GlcA

β-Glc

β-GalNAc

α-GalNAc

α-GalN

β-GlcA

β-Glc

β-GalNAc

α-GalNAc

α-GalN

14

15

16

17

Gly

18

Cys

19

20

21

22

Fig. 7 - Takeda - International Journal of Biological Macromolecules

23

33

5 μm

5 μm

20 μm

20 μm

5 μm

10

11

12

Fig. 8 - Takeda - International Journal of Biological Macromolecules

13

34

20 μm

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る