リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A more accurate analysis of maternal effect genes by siRNA electroporation into mouse oocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A more accurate analysis of maternal effect genes by siRNA electroporation into mouse oocytes

YAMAMOTO, Takuto HONDA, Shinnosuke IDEGUCHI, Issei SUEMATSU, Motoki IKEDA, Shuntaro MINAMI, Naojiro 京都大学 DOI:10.1262/jrd.2022-122

2023

概要

Maternal RNA and proteins accumulate in mouse oocytes and regulate initial developmental stages. Sperm DNA combines with protamine, which is exchanged after fertilization with maternal histones, including H3.3; however, the effect of H3.3 on development post-fertilization remains unclear. Herein, we established an electroporation method to introduce H3.3 siRNA into germinal vesicle (GV)-stage oocytes without removing cumulus cells. Oocyte-attached cumulus cells need to be removed during the traditional microinjection method; however, we confirmed that artificially removing cumulus cells from oocytes reduced fertilization rates, and oocytes originally free of cumulus cells had reduced developmental competence. On introducing H3.3 siRNA at the GV stage, H3.3 was maintained in the maternal pronucleus and second polar body but not in the paternal pronucleus, resulting in embryonic lethality after fertilization. These findings indicate that H3.3 protein was not incorporated into the paternal pronucleus, as it was repeatedly translated and degraded over a relatively short period. Conversely, H3.3 protein incorporated into the maternal genome in the GV stage escaped degradation and remained in the maternal pronucleus after fertilization. This new method of electroporation into GV-stage oocytes without cumulus cell removal is not skill-intensive and is essential for the accurate analysis of maternal effect genes.

この論文で使われている画像

参考文献

1. Bachvarova R. Gene expression during oogenesis and oocyte development in mammals.

Dev Biol (N Y 1985) 1985; 1: 453–524. [Medline]

2. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the

first and second cell cycles in the preimplantation mouse embryo. Dev Biol 1997; 181:

296–307. [Medline] [CrossRef]

3. De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol 2001;

229: 224–236. [Medline] [CrossRef]

4. Minami N, Suzuki T, Tsukamoto S. Zygotic gene activation and maternal factors in

mammals. J Reprod Dev 2007; 53: 707–715. [Medline] [CrossRef]

5. Miyamoto K. Maternal factors involved in nuclear reprogramming by eggs and oocytes.

J Mamm Ova Res 2013; 30: 68–78. [CrossRef]

6. Zhang K, Smith G. Maternal control of early embryogenesis in mammals. Reprod Fertil

Dev 2015; 27: 880–896.

7. Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development 2009; 136: 3033–3042. [Medline] [CrossRef]

124

YAMAMOTO et al.

8. Tong Z-B, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM.

Mater, a maternal effect gene required for early embryonic development in mice. Nat

Genet 2000; 26: 267–268. [Medline] [CrossRef]

9. Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM. Zygote arrest 1

(Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat

Genet 2003; 33: 187–191. [Medline] [CrossRef]

10. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency

disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004; 305:

1157–1159. [Medline] [CrossRef]

11. Honda S, Miki Y, Miyamoto Y, Kawahara Y, Tsukamoto S, Imai H, Minami N.

Oocyte-specific gene Oog1 suppresses the expression of spermatogenesis-specific genes

in oocytes. J Reprod Dev 2018; 64: 297–301. [Medline] [CrossRef]

12. Inoue A, Matoba S, Zhang Y. Transcriptional activation of transposable elements in

mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Res

2012; 22: 1640–1649. [Medline] [CrossRef]

13. Inoue A, Zhang Y. Nucleosome assembly is required for nuclear pore complex assembly

in mouse zygotes. Nat Struct Mol Biol 2014; 21: 609–616. [Medline] [CrossRef]

14. Peng H, Wu Y, Zhang Y. Efficient delivery of DNA and morpholinos into mouse preimplantation embryos by electroporation. PLoS One 2012; 7: e43748. [Medline] [CrossRef]

15. Kaneko T, Sakuma T, Yamamoto T, Mashimo T. Simple knockout by electroporation

of engineered endonucleases into intact rat embryos. Sci Rep 2014; 4: 6382. [Medline]

[CrossRef]

16. Peng H, Chang B, Lu C, Su J, Wu Y, Lv P, Wang Y, Liu J, Zhang B, Quan F, Guo Z,

Zhang Y. Nlrp2, a maternal effect gene required for early embryonic development in the

mouse. PLoS One 2012; 7: e30344. [Medline] [CrossRef]

17. Liu H, Aoki F. Transcriptional activity associated with meiotic competence in fully grown

mouse GV oocytes. Zygote 2002; 10: 327–332. [Medline] [CrossRef]

18. Kikuchi H, Yoshizawa M, Tanemura K, Sato E, Yoshida H. Risk of premature chromatid separation is increased by poor cumulus cell layers and inappropriate culture media for

in vitro maturation of mouse oocytes. J Mamm Ova Res 2016; 33: 63–68. [CrossRef]

19. Gougeon A, Testart J. Germinal vesicle breakdown in oocytes of human atretic follicles

during the menstrual cycle. J Reprod Fertil 1986; 78: 389–401. [Medline] [CrossRef]

20. Lefèvre B, Gougeon A, Peronny H, Testart J. Effect of cumulus cell mass and follicle

quality on in-vitro maturation of cynomolgus monkey oocytes. Hum Reprod 1988; 3:

891–893. [Medline] [CrossRef]

21. Blondin P, Sirard M-A. Oocyte and follicular morphology as determining characteristics

for developmental competence in bovine oocytes. Mol Reprod Dev 1995; 41: 54–62.

[Medline] [CrossRef]

22. Hinrichs K, Williams KA. Relationships among oocyte-cumulus morphology, follicular

atresia, initial chromatin configuration, and oocyte meiotic competence in the horse. Biol

Reprod 1997; 57: 377–384. [Medline] [CrossRef]

23. Torres-Padilla M-E, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M.

Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and

preimplantation embryos. Int J Dev Biol 2006; 50: 455–461. [Medline] [CrossRef]

24. Akiyama T, Suzuki O, Matsuda J, Aoki F. Dynamic replacement of histone H3 variants

reprograms epigenetic marks in early mouse embryos. PLoS Genet 2011; 7: e1002279.

[Medline] [CrossRef]

25. Lin C-J, Conti M, Ramalho-Santos M. Histone variant H3.3 maintains a decondensed

chromatin state essential for mouse preimplantation development. Development 2013;

140: 3624–3634. [Medline] [CrossRef]

26. Lin C-J, Koh FM, Wong P, Conti M, Ramalho-Santos M. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse

zygote. Dev Cell 2014; 30: 268–279. [Medline] [CrossRef]

27. Ishiuchi T, Abe S, Inoue K, Yeung WKA, Miki Y, Ogura A, Sasaki H. Reprogramming

of the histone H3.3 landscape in the early mouse embryo. Nat Struct Mol Biol 2021; 28:

38–49. [Medline] [CrossRef]

28. Aoki F. Zygotic gene activation in mice: profile and regulation. J Reprod Dev 2022; 68:

79–84. [Medline] [CrossRef]

29. Wen D, Banaszynski LA, Liu Y, Geng F, Noh KM, Xiang J, Elemento O, Rosenwaks

Z, Allis CD, Rafii S. Histone variant H3.3 is an essential maternal factor for oocyte

reprogramming. Proc Natl Acad Sci USA 2014; 111: 7325–7330. [Medline] [CrossRef]

30. Kong Q, Banaszynski LA, Geng F, Zhang X, Zhang J, Zhang H, O’Neill CL, Yan P,

Liu Z, Shido K, Palermo GD, Allis CD, Rafii S, Rosenwaks Z, Wen D. Histone variant

31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse

preimplantation embryos. J Biol Chem 2018; 293: 3829–3838. [Medline] [CrossRef]

Minami N, Sasaki K, Aizawa A, Miyamoto M, Imai H. Analysis of gene expression

in mouse 2-cell embryos using fluorescein differential display: comparison of culture

environments. Biol Reprod 2001; 64: 30–35. [Medline] [CrossRef]

Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse

embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol

Reprod Dev 1995; 41: 232–238. [Medline] [CrossRef]

Shikata D, Yamamoto T, Honda S, Ikeda S, Minami N. H4K20 monomethylation

inhibition causes loss of genomic integrity in mouse preimplantation embryos. J Reprod

Dev 2020; 66: 411–419. [Medline] [CrossRef]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time

quantitative PCR and the 2(-Δ Δ C(T)) method. Methods 2001; 25: 402–408. [Medline]

[CrossRef]

Shioya Y, Kuwayama M, Fukushima M, Iwasaki S, Hanada A. In vitro fertilization and

cleavage capability of bovine follicular oocytes classified by cumulus cells and matured in

vitro. Theriogenology 1988; 30: 489–496. [Medline] [CrossRef]

Chen S, Lee B, Lee AYF, Modzelewski AJ, He L. Highly efficient mouse genome

editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 2016; 291:

14457–14467. [Medline] [CrossRef]

van der Heijden GW, Dieker JW, Derijck AAHA, Muller S, Berden JHM, Braat

DDM, van der Vlag J, de Boer P. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 2005;

122: 1008–1022. [Medline] [CrossRef]

Debey P, Szöllösi MS, Szöllösi D, Vautier D, Girousse A, Besombes D. Competent

mouse oocytes isolated from antral follicles exhibit different chromatin organization

and follow different maturation dynamics. Mol Reprod Dev 1993; 36: 59–74. [Medline]

[CrossRef]

Zuccotti M, Ponce RH, Boiani M, Guizzardi S, Govoni P, Scandroglio R, Garagna S,

Redi CA. The analysis of chromatin organisation allows selection of mouse antral oocytes

competent for development to blastocyst. Zygote 2002; 10: 73–78. [Medline] [CrossRef]

Osman P. Rate and course of atresia during follicular development in the adult cyclic rat.

J Reprod Fertil 1985; 73: 261–270. [Medline] [CrossRef]

Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol 1991;

124: 43–101. [Medline] [CrossRef]

Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments

on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 2003; 9: 35–48. [Medline] [CrossRef]

Schroeder AC, Eppig JJ. The developmental capacity of mouse oocytes that matured

spontaneously in vitro is normal. Dev Biol 1984; 102: 493–497. [Medline] [CrossRef]

Chang HC, Liu H, Zhang J, Grifo J, Krey LC. Developmental incompetency of

denuded mouse oocytes undergoing maturation in vitro is ooplasmic in nature and is associated with aberrant Oct-4 expression. Hum Reprod 2005; 20: 1958–1968. [Medline]

[CrossRef]

Miki H, Ogonuki N, Inoue K, Baba T, Ogura A. Improvement of cumulus-free oocyte

maturation in vitro and its application to microinsemination with primary spermatocytes

in mice. J Reprod Dev 2006; 52: 239–248. [Medline] [CrossRef]

Mahmodi R, Abbasi M, Amiri I, Kashani IR, Pasbakhsh P, Saadipour K, Amidi

F, Abolhasani F, Sobhani A. Cumulus cell role on mouse germinal vesicle oocyte

maturation, fertilization, and subsequent embryo development to blastocyst stage in vitro.

Yakhteh 2009; 11: 299–302.

Zhou C-J, Wu S-N, Shen J-P, Wang D-H, Kong X-W, Lu A, Li Y-J, Zhou H-X, Zhao

Y-F, Liang C-G. The beneficial effects of cumulus cells and oocyte-cumulus cell gap

junctions depends on oocyte maturation and fertilization methods in mice. PeerJ 2016; 4:

e1761. [Medline] [CrossRef]

Arand J, Chiang HR, Martin D, Snyder MP, Sage J, Reijo Pera RA, Wossidlo M.

Tet enzymes are essential for early embryogenesis and completion of embryonic genome

activation. EMBO Rep 2022; 23: e53968. [Medline] [CrossRef]

Nashun B, Hill PWS, Smallwood SA, Dharmalingam G, Amouroux R, Clark SJ,

Sharma V, Ndjetehe E, Pelczar P, Festenstein RJ, Kelsey G, Hajkova P. Continuous

histone replacement by hira is essential for normal transcriptional regulation and de novo

DNA Methylation during mouse oogenesis. Mol Cell 2015; 60: 611–625. [Medline]

[CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る