リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deposition and etching behaviour of boron trichloride gas at silicon surface」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deposition and etching behaviour of boron trichloride gas at silicon surface

Muroi Mitsuko Yamada Ayami Saito Ayumi Habuka Hitoshi 40323927 横浜国立大学

2020.01

概要

The deposition and etching at a silicon surface by boron trichloride gas were overviewed in a wide temperature range using a chemical vapour deposition reactor. At temperatures lower than 800 °C, while the silicon surface was covered with boron, the formed film thickness was ignorable. At 900 °C, the boron deposition rate increased to 0.25 μm min^(−1). In the temperature range between 900 and 1000 °C, the boron film formation was considerable. In contrast, at 1100 °C, the silicon surface was etched at 0.36 μm min^(−1). At temperatures higher than 1050 °C, while etching occurred along with producing chlorosilanes, the silicon surface after the etching was still covered with boron. Boron deposition and silicon etching might simultaneously occur at high temperatures by the boron trichloride gas. By adjusting the surface temperature to 800 °C, boron and silicon co-deposition was possible using the gas mixture of dichlorosilane and boron trichloride.

参考文献

[1] S. M. Sze, Semiconductor Devices 2nd Ed., p. 378, John Wiley & Sons (New York, USA,

2002).

[2] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements 2nd edition,

Butterqorth-Heineman,Oxford, UK (1997).

[3] F. Shimura, Semiconductor Silicon Crystal Technology, Academic Press, San Diego, USA

(1989).

[4 ]D. Crippa, D. L. Rode, M. Masi, Silicon Epitaxy, Academic Press, San Diego, USA (2001).

[5] H. Habuka, T Otsuka, W. F. Qu, M. Shimada and K. Okuyama, Model of Boron

Incorporation into Silicon Epitaxial Film in a B2H6-SiHCl3-H2 System , J. Crystal Growth,

222(1-2), 183-193 (2000).

[6] F. Gromball, J. Heemeier, N. Linke, M. Burchert and J. Müller, High rate deposition and in

situ doping of silicon films for solar cells on glass, Solar Energy Materials and Solar Cells, 84

(1–4), 71-82 (2004).

[7] X. Liu, L. K. Nanver and T. L. M. Scholtes, Nanometer-Thin Pure Boron Layers as Mask for

Silicon, J. Microelectromechanical Systems, 26 (6), 1428 - 1434 (2017).

[8] L. K. Nanver, L. Qi, V. Mohammadi, K. R. M. Mok, W. B. de Boer, N. Golshani, .

A.

Sammak, T. L. M. Scholtes, A. Gottwald, U. Kroth and F. Scholze, Robust UV/VUV/EUV Pure

B photodiode detector technology with high CMOS compatibility, IEEE J. Sel. Topics Quantum

Electron., 20 (6), 3801711 (2014).

14

[9] T. Knežević, L. K. Nanver, T. Suligoj, Silicon drift detectors with the drift field induced by

Pure B-coated trenches, Photonics, 3 (4), 1-18 (2016).

[10] V. Mohammadi et al., "VUV/low-energy electron Si photodiodes with post metal 400 °C

Pure B deposition", IEEE Electron Device Lett., 34 (12), 1545-1547 (2013).

[11] V. Mohammadi, N. Golshani, K. R. C. Mok, W. B. de Boer, J. Derakhshandeh, L. K. Nanver,

Temperature dependency of the kinetics of Pure B CVD deposition over patterned Si/SiO2

surfaces, Microelectron. Eng., 125, 45-50 (2014).

[12] K. Tokunaga, F. C. Redeker, D. A. Danner and D. W. Hess, Comparison of Aluminum Etch

Rates in Carbon Tetrachloride and Boron Trichloride Plasmas, J. Electrochem. Soc., 128 (4),

851-855 (1981).

[13] H. O. Pierson, Boron Nitride Composites By Chemical Vapor Deposition, J. Composite

Mater., 9 (3), 228-240 (1975).

[14] Y. Cheng, X. Yin, Y. Liu, S. Lia, L. Cheng and L. Zhanga, BN Coatings Prepared by Low

Pressure Chemical Vapor Deposition Using Boron Trichloride–Ammonia–Hydrogen–Argon

Mixture Gases, Surf. Coat. Technol., 204 (16–17), 2797-2802 (2010).

[15] U. Jansson and J. Carlsson, Chemical Vapour Deposition of Boron Carbides in the

Temperature Range 1300–1500 K and at a Reduced Pressure, Thin Solid Films, 124 (2), 101-107

(1985).

[16] S. V. Deshpande and E. Gulari, Filament Activated Chemical Vapor Deposition of Boron

Carbide Coatings, Appl. Phys. Lett. 65, 1757-1759 (1994).

15

[17] M. O. Watanabe, S. Itoh, and K. Mizushima, Electrical Properties of BC2N Thin Films

Prepared by Chemical Vapor Deposition, J. Appl. Phys., 78, 2880-2882 (1995).

[18] A. Tomita, and T. Kyotani, The Template Synthesis of Double Coaxial Carbon Nanotubes

with Nitrogen-Doped and Boron-Doped Multiwalls, J. Am. Chem. Soc., 127 (25), 8956-8957

(2005).

[19] H. Habuka, T. Suzuki, S. Yamamoto, A. Nakamura, T. Takeuchi and M. Aihara, Silicon

Surface Etching by Hydrogen Chloride Gas, Thin Solid Film., 489(1-2), 104-110 (2005).

[20] H. Habuka, A. Sakurai and A. Saito, By-product Formation in a Trichlorosilane-Hydrogen

System for Silicon Film Deposition, ECS J. Solid State Sci. Technol., 4(2), P16-P19 (2015).

[21] H. Habuka and M. Matsui, Langasite Crystal Microbalance Frequency Behavior over Wide

Gas Phase Conditions for Chemical Vapor Deposition, Surf. Coat. Technol., 230, 312-315

(2013).

[22] M. Muroi, M. Matsuo, H. Habuka, Y. Ishida, S. Ikeda and S. Hara, Real Time Evaluation of

Silicon Epitaxial Growth Process by Exhaust Gas Measurement Using Quartz Crystal

Microbalance, Materials Science in Semiconductor Processing, 88, 192-197 (2018).

[23] B. V. Crist, Handbook of Monochromatic XPS Spectra, The Elements and Native Oxides,

John Wiley & Sons, Chichester, UK (2000).

[24] C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, J. R. Jr. Rumble,

NIST Standard Reference Database 20, Version 3.4 (web version) (http:/srdata.nist.gov/xps/)

2003.

16

[25] A. Mostafa and M. Medraj, Binary Phase Diagrams and Thermodynamic Properties of

Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl), Materials (Basel),

10(6), 676 (2017).

17

Figure captions

Figure 1 (a) Horizontal cold wall reactor and (b) process used in this study.

Figure 2 Wafer thickness change rate due to deposition and etching caused by boron trichloride

gas on silicon surface at various temperatures.

Figure 3 Quadrupole mass spectra of exhaust gas during boron film deposition at 1000 oC.

Figure 4 Quadrupole mass spectra of exhaust gas during silicon etching at 1100 oC.

Figure 5 QCM frequency change versus time after introducing boron trichloride gas at 1100 oC.

Figure 6 QCM frequency shift immediately after introducing boron trichloride gas at various

temperatures.

Figure 7 Chemical condition of (a) boron 1s orbital and (b) silicon 2p orbital after exposed to

boron trichloride gas at 800 oC.

Figure 8 Chemical condition of boron 1s orbital after exposed to boron trichloride gas at 1100

C.

Figure 9 Chemical condition of boron 1s orbital after exposed to boron trichloride gas and

dichlorosilane gas at 800 oC.

Figure 10 Chemical condition of silicon 2p orbital after exposed to boron trichloride gas and

dichlorosilane gas at 800 oC.

Figure 11 Schematic of chemical reactions of boron trichloride and dichlorosilane at silicon

surface.

18

Halogen lamps

H2

BCl3

Inlet

Quartz chamber

Sample

QCM Exhaust

SiH2Cl2

QMS

Temp. (oC)

(a)

H2 1 atm, 1 slm

1150 oC

Surface

cleaning

RT

BCl3

SiH2Cl2

800-1100 oC

RT

Time

(b)

Fig. 1

Deposition

0.2

-0.2

Etching

Change rate (µm min-1)

0.4

H2: 400 sccm

BCl3: 100 sccm

20 min

-0.4

600

800

1000

Substrate temperature (oC)

Fig. 2

0.01

Cl +

B+

BCl3 +

BCl2 +

H2: 400 sccm

BCl3: 100 sccm

1000℃, 20 min

BCl +

Normalized partial pressure Pi/PH2

1 2

50

100

Mass (a.m.u.)

150

200

Fig. 3

Cl +

0.01

50

100

Mass (a.m.u.)

SiCl4 +

SiCl3 +

BCl3 +

SiCl +

B+

BCl +

0.1

SiCl2 +

H2+

H2: 400 sccm

BCl3: 100 sccm

1100℃, 20 min

BCl2 +

Normalized partial pressure Pi/PH2

150

200

Fig. 4

Frequency (Hz)

Density & Viscosity

-100000

QCM

H2: 400 sccm

BCl3: 100 sccm

-200000 1100℃

400

800

Time (s)

1200

Fig. 5

Density & Viscosity

Deposition

Frequency shift (Hz)

-20000

-40000

600

QCM

Immediately after

BCl3 introduction

800

1000

Temperature (oC)

1200

Fig. 6

H2: 400 sccm, BCl3: 100 sccm, 800 ℃, 20 min

(b) Si 2p

Counts(-)

Counts(-)

(a) B 1s

SiO2

Si-Si

190

185 105

100

Binding energy(eV)

95

Fig. 7

Counts(-)

XPS B1s

H2: 400 sccm

BCl3: 100 sccm

1100 oC

195

193

191

189

Binding energy(eV)

187

Fig. 8

Counts (-)

195

XPS B1s

H2: 1000 sccm

SiH2Cl2: 20 sccm

BCl3: 100 sccm

800℃

193

191

189

Binding energy (eV)

187

Fig. 9

Counts (-)

XPS Si2p

H2: 1000 sccm

SiH2Cl2: 20 sccm

BCl3: 100 sccm

800℃

Si-Si

SiO2

105

103

101

99

Binding energy(eV)

97

95

Fig.

10

Exhaust

BCl3

SiH2Cl2

HCl

H2

SiCl2

SiCl2

HCl

HCl

HCl

HCl

SiCl3

Si

SiCl

SiCl2

SiHCl3

SiCl4

(SiCl2)n

QCM

Fig. 11

...

参考文献をもっと見る