リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Aquaphotomic Study of Effects of Different Mixing Waters on the Properties of Cement Mortar」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Aquaphotomic Study of Effects of Different Mixing Waters on the Properties of Cement Mortar

Muncan, Jelena Tamura, Satoshi Nakamura, Yuri Takigawa, Mizuki Tsunokake, Hisao Tsenkova, Roumiana 神戸大学

2022.11

概要

The mixing water used for cement concrete has a significant effect on the physical properties of the material after hardening; however, other than the upper limit for the mixed impurities, not enough consideration has been given to the functions and characteristics of water at the molecular level. In this study, we investigated the effect of four different types of water (two spring-, mineral waters, tap water and distilled water) on the drying shrinkage of the hardened cement by comparing the material properties of the concrete specimens and analyzing the molecular structure of the water and cement mortar using aquaphotomics. The near infrared (NIR) spectra of waters used for mixing were acquired in the transmittance mode using a high-precision, high-accuracy benchtop spectrometer in the range of 400–2500 nm, with the 0.5 nm step. The NIR spectra of cement paste and mortar were measured in 6.2 nm increments in the wavelength range of 950 nm to 1650 nm using a portable spectrometer. The measurements of cement paste and mortar were performed on Day 0 (immediately after mixing, cement paste), 1 day, 3 days, 7 days, and 28 days after mixing (cement mortar). The spectral data were analyzed according to the aquaphotomics’multivariate analysis protocol, which involved exploration of raw and preprocessed spectra, exploratory analysis, discriminating analysis and aquagrams. The results of the aquaphotomics’analysis were interpreted together with the results of thermal and drying shrinkage measurements. Together, the findings clearly demonstrated that the thermal and drying shrinkage properties of the hardened cement material differed depending on the water used. Better mechanical properties were found to be a result of using mineral waters for cement mixing despite minute differences in the chemical content. In addition, the aquaphotomic characterization of the molecular structure of waters and cement mortar during the initial hydration reaction demonstrated the possibility to predict the characteristics of hardened cement at a very early stage. This provided the rationale to propose a novel evaluation method based on aquaphotomics for non-invasive evaluation and monitoring of cement mortar.

参考文献

1. Popovics, S.; Ujhelyi, J. Contribution to the Concrete Strength versus Water-Cement Ratio Relationship. J. Mater. Civ. Eng. 2008, 20, 459–463. [CrossRef]

2. Popovic, S. Analysis of the concrete strength versus water cement ratio relationship. ACI Mater. J. 1990, 87, 517–529.

3. Bentz, D.P.; Aïtcin, P.-C. The Hidden Meaning of Water- Cement Ratio. Concr. Int. 2008, 30, 51–54.

4. Kohno, K.; Tazava, E.; Monji, T. Atarashii Konkurîto Kougaku, 1st ed.; Asakura Shoten: Tokyo, Japan, 1987.

5. Lee, H.J.; Kim, D.G.; Lee, J.H.; Cho, M.S. A Study for Carbonation Degree on Concrete using a Phenolphthalein Indicator and Fourier-Transform Infrared Spectroscopy. Int. J. Civ. Environ. Eng. 2012, 6, 95–101.

6. He, Z.; Han, X.; Zhang, M.; Yuan, Q.; Shi, J.; Zhan, P. A novel development of green UHPC containing waste concrete powder derived from construction and demolition waste. Powder Technol. 2022, 398, 117075. [CrossRef]

7. Ting, L.; Qiang, W.; Shiyu, Z. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol. 2019, 345, 54–63. [CrossRef]

8. Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z. Durability of ultra-high performance concrete—A review. Constr. Build. Mater. 2020, 255, 119296. [CrossRef]

9. Mo, Z.; Wang, R.; Gao, X. Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin. Constr. Build. Mater. 2020, 256, 119454. [CrossRef]

10. Ma, C.; Chen, G.; Shi, J.; Zhou, H.; Ren, W.; Du, Y. Improvement mechanism of water resistance and volume stability of magnesium oxychloride cement: A comparison study on the influences of various gypsum. Sci. Total Environ. 2022, 829, 154546. [CrossRef]

11. Rougelot, T.; Skoczylas, F.; Burlion, N. Water desorption and shrinkage in mortars and cement pastes: Experimental study and poromechanical model. Cem. Concr. Res. 2009, 39, 36–44. [CrossRef]

12. Pichler, C.; Lackner, R.; Mang, H.A. A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials. Eng. Fract. Mech. 2007, 74, 34–58. [CrossRef]

13. Hua, C.; Acker, P.; Ehrlacher, A. Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale. Cem. Concr. Res. 1995, 25, 1457–1468. [CrossRef]

14. Xi, Y.; Jennings, H.M. Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory. Mater. Struct. 1997, 30, 329–339. [CrossRef]

15. Liu, J.; Shi, C.; Ma, X.; Khayat, K.H.; Zhang, J.; Wang, D. An overview on the effect of internal curing on shrinkage of high performance cement-based materials. Constr. Build. Mater. 2017, 146, 702–712. [CrossRef]

16. Comité Euro-International du Béton. Model Code 1990; Comité Euro-International du Béton: Paris, France, 1991; pp. 87–109.

17. Bazant, Z.P.; Baweja, S. Creep and shrinkage prediction model for analysis and design of concrete structures—Model B3— Northwestern Scholars. Mater. Constr. 1995, 28, 357–365.

18. Shimomura, T.; Maekawa, K. Drying shrinkage model or concrete based on micromechanism in concrete. Doboku Gakkai Ronbunshu 1995, 1995, 35–45. [CrossRef]

19. Zhu, Y.; Ishida, T.; Maekawa, K. Multi-scale constitutive model or concrete based on thermodynamic states of moisture in micro-pores. Doboku Gakkai Ronbunshu 2004, 2004, 241–260. [CrossRef]

20. Ishida, T.; Luan, Y. An Enhanced model for shrinkage behavior based on early age hydration and moisture state in pore structure. J. Jpn. Soc. Civ. Eng. Ser. E2 2012, 68, 422–436. [CrossRef]

21. Montanari, L.; Amirkhanian, A.N.; Suraneni, P.; Weiss, J. Design Methodology for Partial Volumes of Internal Curing Water Based on the Reduction of Autogenous Shrinkage. J. Mater. Civ. Eng. 2018, 30, 04018137. [CrossRef]

22. Lura, P.; Jensen, O.M.; Van Breugel, K. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 2003, 33, 223–232. [CrossRef]

23. Tang, S.; Huang, D.; He, Z. A review of autogenous shrinkage models of concrete. J. Build. Eng. 2021, 44, 103412. [CrossRef]

24. Powers, T.C. The thermodynamics of volume change and creep. Matér. Constr. 1968, 1, 487–507. [CrossRef]

25. Shimomurat, T.; Maekawa, K. Analysis of the drying shrinkage behaviour of concrete using a micromechanical model based on the micropore structure of concrete. Mag. Concr. Res. 2015, 49, 303–322. [CrossRef]

26. Beltzung, F.; Wittmann, F.H. Role of disjoining pressure in cement based materials. Cem. Concr. Res. 2005, 35, 2364–2370. [CrossRef]

27. Maruyama, I. Origin of Drying Shrinkage of Hardened Cement Paste: Hydration Pressure. J. Adv. Concr. Technol. 2010, 8, 187–200. [CrossRef]

28. Feldman, R.H. Sorption and Length-Change Scanning Isotherms of Methanol and Water on Hydrated Portland Cement. In Proceedings of the Fifth International Symposium on the Chemistry of Cement, National Research Council Canada, Tokyo, Japan, 7–11 October 1968; Volume 3, pp. 53–66.

29. Japanese Standards Association (JSA). Japanese Industrial Standards (JIS) A 5308, Ready-Mixed Concrete; Japanese Standards Association: Tokyo, Japan, 2019; p. 7.

30. ASTM C94. Standard Specification for Ready-Mixed Concrete; ASTM International: West Conshohocken, PA, USA, 1996.

31. Japanese Standards Association (JSA). Japanese Industrial Standard (JIS) R 5210 Portland Cement; Japanese Standards Association: Tokyo, Japan, 2019; Volume 1607, p. 5.

32. Maheshwari, R.K.; Rani, B.; Rani, B.; Maheshwari, R.; Garg, A.; Prasad, M. Bottled Water—A Global Market Overview Bottled Water—A Global Market Overview. Bull. Environ. Pharmacol. Life Sci. 2012, 1, 1–4.

33. Brei, V.A. How is a bottled water market created? Wiley Interdiscip. Rev. Water 2018, 5, e1220. [CrossRef]

34. Kubota, M.; Nishimoto, Y. Koredewakaru Mizu no Kisotishiki; Maruzen Corp.: Tokyo, Japan, 2003.

35. Toda, M. Shohokaramanabu Kinousui; Nihon Sangyo Senjou Kyougikai, Kougyo Chousakai Corp.: Tokyo, Japan, 2002.

36. Al-Haq, M.I.; Sugiyama, J.; Isobe, S. Applications of Electrolyzed Water in Agriculture & Food Industries. Food Sci. Technol. Res. 2005, 11, 135–150. [CrossRef]

37. Teixeira da Silva, J.A.; Dobránszki, J. Impact of magnetic water on plant growth. Environ. Exp. Biol. 2014, 12, 137–142.

38. Johnson, K.E.; Sanders, J.J.; Gellin, R.G.; Palesch, Y.Y. The effectiveness of a magnetized water oral irrigator (Hydro Fioss®) on plaque, calculus and gingival health. J. Clin. Periodontol. 1998, 25, 316–321. [CrossRef]

39. Hafizi, L.; Gholizadeh, M.; Karimi, M.; Hosseini, G.; Mostafavi-Toroghi, H.; Haddadi, M.; Rezaiean, A.; Ebrahimi, M.; Meibodi, N.E. Effects of magnetized water on ovary, pre-implantation stage endometrial and fallopian tube epithelial cells in mice. Iran. J. Reprod. Med. 2014, 12, 243. [PubMed]

40. Kim, Y.-H.; Park, Y.; Bae, S.; Kim, S.Y.; Han, J.-G. Compressive Strength Evaluation of Ordinary Portland Cement Mortar Blended with Hydrogen Nano-Bubble Water and Graphene. J. Nanosci. Nanotechnol. 2019, 20, 647–652. [CrossRef] [PubMed]

41. Grzegorczyk-Fran´czak, M.; Barnat-Hunek, D.; Andrzejuk, W.; Zaburko, J.; Zalewska, M.; Łagód, G. Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases. Materials 2021, 14, 1902. [CrossRef] [PubMed]

42. Kim, W.K.; Hong, G.; Kim, Y.H.; Kim, J.M.; Kim, J.; Han, J.G.; Lee, J.Y. Mechanical Strength and Hydration Characteristics of Cement Mixture with Highly Concentrated Hydrogen Nanobubble Water. Materials 2021, 14, 2735. [CrossRef]

43. Kim, W.K.; Kim, Y.H.; Hong, G.; Kim, J.M.; Han, J.G.; Lee, J.Y. Effect of Hydrogen Nanobubbles on the Mechanical Strength and Watertightness of Cement Mixtures. Materials 2021, 14, 1823. [CrossRef]

44. Abdel-Magid, T.I.M.; Hamdan, R.M.; Abdelgader, A.A.B.; Omer, M.E.A.; Ahmed, N.M.R.A. Effect of Magnetized Water on Workability and Compressive Strength of Concrete. Procedia Eng. 2017, 193, 494–500. [CrossRef]

45. Prabakaran, E.; Vijayakumar, A.; Rooby, J.; Nithya, M. A comparative study of polypropylene fiber reinforced concrete for various mix grades with magnetized water. Mater. Today Proc. 2021, 45, 123–127. [CrossRef]

46. Zhang, Z.; Li, B.; Song, N.; Venkatesh, S.; Jagannathan, P.; Prasath Kumar, V.R. An Experimental Study on the Effect of Magnetized Water on Mechanical Properties of Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 912, 032081. [CrossRef]

47. Lal, P.; Kavitha, P.E. Modified Magnetized Water Concrete Using Nanosilica. Lect. Notes Civ. Eng. 2021, 97, 421–431. [CrossRef]

48. Mohammadnezhad, A.; Azizi, S.; Sousanabadi Farahani, H.; Tashan, J.; Habibnejad Korayem, A. Understanding of the Magnetiz- ing Process of Water and its Effects on Properties of Cementitious Composites—A Critical Review. SSRN Electron. J. 2022, 47. [CrossRef]

49. Takigawa, M.; Konaka, T.; Tsunokake, H.; Tamura, S. Basic research on the effects of various mixed water on the physical characteristics or mortar. In Proceedings of the Reiwa 3th annual Meeting of the Japan Society of Civil Engineers, Tokyo, Japan, 6–10 September 2021.

50. Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [CrossRef]

51. Tsenkova, R. Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [CrossRef]

52. Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [CrossRef] [PubMed]

53. Tsenkova, R.; Muncan, J.; Kovacs, Z. Aquaphotomics. In Handbook of Near-Infrared Analysis; Ciurczak, E.W., Igne, B., Workman, J., Jr., Burns, D.A., Eds.; CRC Press: Boca Raton, Florida, USA, 2022; p. 917. ISBN 9781138576483.

54. van de Kraats, E.B.; Munc´an, J.; Tsenkova, R.N. Aquaphotomics—Origin, concept, applications and future perspectives. Substantia 2019, 3, 13–28. [CrossRef]

55. Roger, J.; Mallet, A.; Marini, F. Preprocessing NIR Spectra for Aquaphotomics. Molecules 2022, 27, 6795. [CrossRef]

56. Tan, J.; Sun, Y.; Ma, L.; Feng, H.; Guo, Y.; Cai, W.; Shao, X. Knowledge-based genetic algorithm for resolving the near-infrared spectrum and understanding the water structures in aqueous solution. Chemom. Intell. Lab. Syst. 2020, 206, 104150. [CrossRef]

57. Cui, X.; Sun, Y.; Cai, W.; Shao, X. Chemometric methods for extracting information from temperature-dependent near-infrared spectra. Sci. China Chem. 2019, 62, 583–591. [CrossRef]

58. Shao, X.; Cui, X.; Liu, Y.; Xia, Z.; Cai, W. Understanding the molecular interaction in solutions by chemometric resolution of near−infrared spectra. ChemistrySelect 2017, 2, 10027–10032. [CrossRef]

59. Cui, X.; Zhang, J.; Cai, W.; Shao, X. Chemometric algorithms for analyzing high dimensional temperature dependent near infrared spectra. Chemom. Intell. Lab. Syst. 2017, 170, 109–117. [CrossRef]

60. Shao, X.; Cui, X.; Wang, M.; Cai, W. High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 83–89. [CrossRef]

61. Su, T.; Sun, Y.; Han, L.; Cai, W.; Shao, X. Revealing the interactions of water with cryoprotectant and protein by near–infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120417. [CrossRef] [PubMed]

62. Babu, G.R.; Reddy, B.M.; Ramana, N.V. Quality of mixing water in cement concrete. A review. Mater. Today Proc. 2018, 5, 1313–1320. [CrossRef]

63. Tsenkova, R.; Munc´an, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [CrossRef]

64. Martens, H.; Martens, M. Multivariate Analysis of Quality: An Introduction; Wiley: Chichester, UK, 2001; ISBN 9780471974284.

65. Wold, S.; Sjostrom, M. SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy. In Chemometrics: Theory and Application; Kowalski, B.R., Ed.; American Chemical Society at New York University: New York, NY, USA, 1977; pp. 243–282.

66. Tsenkova, R. Aquaphotomics: Water in the biological and aqueous world scrutinised with invisible light. Spectrosc. Eur. 2010, 22, 6–10.

67. Kovacs, Z.; Muncan, J.; Veleva, P.; Oshima, M.; Shigeoka, S.; Tsenkova, R. Aquaphotomics for monitoring of groundwater using short-wavelength near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121378. [CrossRef] [PubMed]

68. Rinnan, Å.; Nørgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Data Pre-Processing. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.-W., Ed.; Academic Press: Cambridge, MA, USA, 2009; ISBN 9780123741363.

69. Kojic´, D.; Tsenkova, R.; Tomobe, K.; Yasuoka, K.; Yasui, M. Water confined in the local field of ions. ChemPhysChem 2014, 15, 4077–4086. [CrossRef] [PubMed]

70. Muncan, J.; Kovacs, Z.; Pollner, B.; Ikuta, K.; Ohtani, Y.; Terada, F.; Tsenkova, R. Near infrared aquaphotomics study on common dietary fatty acids in cow’s liquid, thawed milk. Food Control 2020, 122, 107805. [CrossRef]

71. Gowen, A.A.; Tsenkova, R.; Esquerre, C.; Downey, G.; O’Donnell, C.P. Use of near infrared hyperspectral imaging to identify water matrix co-ordinates in mushrooms (Agaricus bisporus) subjected to mechanical vibration. J. Near Infrared Spectrosc. 2009, 17, 363–371. [CrossRef]

72. Malegori, C.; Muncan, J.; Mustorgi, E.; Tsenkova, R.; Oliveri, P. Analysing the water spectral pattern by near-infrared spectroscopy and chemometrics as a dynamic multidimensional biomarker in preservation: Rice germ storage monitoring. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120396. [CrossRef]

73. Tsenkova, R.N.; Iordanova, I.K.; Toyoda, K.; Brown, D.R. Prion protein fate governed by metal binding. Biochem. Biophys. Res. Commun. 2004, 325, 1005–1012. [CrossRef]

74. Kovacs, Z.; Pollner, B.; Bazar, G.; Muncan, J.; Tsenkova, R. A Novel Tool for Visualization of Water Molecular Structure and Its Changes, Expressed on the Scale of Temperature Influence. Molecules 2020, 25, 2234. [CrossRef] [PubMed]

75. Geladi, P.; Dåbakk, E. Computational Methods and Chemometrics in Near Infrared Spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Lindon, J.C., Ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 386–391. [CrossRef]

76. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1951, 36, 1627–1639. [CrossRef]

77. Fujimoto, T.; Yamamoto, H.; Tsuchikawa, S. Estimation of wood stiffness and strength properties of hybrid larch by near-infrared spectroscopy. Appl. Spectrosc. 2007, 61, 882–888. [CrossRef] [PubMed]

78. Kondo, A.; Kurosawa, R.; Ryu, J.; Matsuoka, M.; Takeuchi, M. Investigation on the Mechanisms of Mg(OH)2Dehydration and MgO Hydration by Near-Infrared Spectroscopy. J. Phys. Chem. C 2021, 125, 10937–10947. [CrossRef]

79. Hong, B.H.; Rubenthaler, G.L.; Allan, R.E. Wheat pentosans. II. Estimating kernel hardness and pentosans in water extracts by near-infrared reflectance. Cereal Chem. 1989, 66, 374–377.

80. Kuroki, S.; Tsenkova, R.; Moyankova, D.P.; Muncan, J.; Morita, H.; Atanassova, S.; Djilianov, D. Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis. Sci. Rep. 2019, 9, 3049. [CrossRef]

81. Blomquist, G.; Johansson, E.; Söderström, B.; Wold, S. Data analysis of pyrolysis—Chromatograms by means of simca pattern recognition. J. Anal. Appl. Pyrolysis 1979, 1, 53–65. [CrossRef]

82. Kvalheim, O.M.; Karstang, T.V. SIMCA—Classification by means of disjoint cross validated principal components models. In Multivariate Pattern Recognition in Chemometrics: Illustrated by Case Studies; Brereton, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 9, pp. 209–248.

83. Headrick, J.M.; Diken, E.G.; Walters, R.S.; Hammer, N.I.; Christie, R.A.; Cui, J.; Myshakin, E.M.; Duncan, M.A.; Johnson, M.A.; Jordan, K.D. Spectral signatures of hydrated proton vibrations in water clusters. Science 2005, 308, 1765–1769. [CrossRef]

84. Mizuse, K.; Fujii, A. Tuning of the Internal Energy and Isomer Distribution in Small Protonated Water Clusters H + (H2O) 4–8: An Application of the Inert Gas Messenger Technique. J. Phys. Chem. A 2012, 116, 4868–4877. [CrossRef]

85. Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chem. 2016, 194, 873–880. [CrossRef]

86. Kurashige, J.; Takaoka, K.; Takasago, M. State of Dissolved Water in Triglycerides as Determined by Fourier Transform Infrared and Near Infrared Spectroscopy. J. Jpn. Oil Chem. Soc. 1991, 40, 549–553. [CrossRef]

87. Hofmann, D.W.M.; Kuleshova, L.; D’Aguanno, B.; Di Noto, V.; Negro, E.; Conti, F.; Vittadello, M. Investigation of water structure in Nafion membranes by infrared spectroscopy and molecular dynamics simulation. J. Phys. Chem. B 2009, 113, 632–639. [CrossRef] [PubMed]

88. Robertson, W.H.; Diken, E.G.; Price, E.A.; Shin, J.-W.; Johnson, M.A. Spectroscopic determination of the OH- solvation shell in the OH-.(H2O)n clusters. Science 2003, 299, 1367–1372. [CrossRef] [PubMed]

89. Davis, J.G.; Gierszal, K.P.; Wang, P.; Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 2012, 491, 582–585. [CrossRef] [PubMed]

90. Abd. el.aleem, S.; Heikal, M.; Morsi, W.M. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Constr. Build. Mater. 2014, 59, 151–160. [CrossRef]

91. Okumura, M.; Yeh, L.I.; Myers, J.D.; Lee, Y.T. Infrared spectra of the solvated hydronium ion: Vibrational predissociation spectroscopy of mass-selected H3O+·(H2O)n·(H2)m. J. Phys. Chem. 1990, 94, 3416–3427. [CrossRef]

92. Yeh, L.I.; Okumura, M.; Myers, J.D.; Price, J.M.; Lee, Y.T. Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n = 1, 2, 3). J. Chem. Phys. 1989, 91, 7319–7330. [CrossRef]

93. Zhang, L.; Noda, I.; Czarnik-Matusewicz, B.; Wu, Y. Multivariate estimation between mid and near-infrared spectra of hexafluoroisopropanol-water mixtures. Anal. Sci. 2007, 23, 901–905. [CrossRef]

94. Iwahashi, M.; Suzuki, M.; Katayama, N.; Matsuzawa, H.; Czarnecki, M.A.; Ozaki, Y.; Wakisaka, A. Molecular self-assembling of butan-1-ol, butan-2-ol, and 2-methylpropan-2-ol in carbon tetrachloride solutions as observed by near-infrared spectroscopic measurements. Appl. Spectrosc. 2000, 54, 268–276. [CrossRef]

95. Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near Infrared Spectroscopy and Chemometrics Studies of Temperature- Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. [CrossRef]

96. Shin, J.-W.; Hammer, N.I.; Diken, E.G.; Johnson, M.A.; Walters, R.S.; Jaeger, T.D.; Duncan, M.A.; Christie, R.A.; Jordan, K.D. Infrared Signature of Structures Associated with the H+(H2O)n (n = 6 to 27) Clusters. Science 2004, 304, 1137–1140. [CrossRef] [PubMed]

97. Sagawa, N.; Shikata, T. Hydration Behavior of Poly(ethylene oxide)s in Aqueous Solution As Studied by Near-Infrared Spectro- scopic Techniques. J. Phys. Chem. B 2013, 117, 10883–10888. [CrossRef] [PubMed]

98. Czarnecki, M.A.; Morisawa, Y.; Katsumoto, Y.; Takaya, T.; Singh, S.; Sato, H.; Ozaki, Y. Solvent effect on the competition between weak and strong interactions in phenol solutions studied by near-infrared spectroscopy and DFT calculations. Phys. Chem. Chem. Phys. 2021, 23, 19188–19194. [CrossRef] [PubMed]

99. Gotic´, M.; Music´, S. Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 2007, 834–836, 445–453. [CrossRef]

100. Frost, R.L.; Dickfos, M.J.; Cˇ ejka, J. Raman spectroscopic study of the uranyl carbonate mineral zellerite. J. Raman Spectrosc. 2008, 39, 582–586. [CrossRef]

101. Bertie, J.E.; Whalley, E. Infrared spectra of ices II, III, and V in the range 4000 to 350 cm−1. J. Chem. Phys. 1964, 40, 1646–1659. [CrossRef]

102. Solcaniova, E.; Kovac, S. Hydrogen Bonding in Phenols. IV. Intramolecular OH... n Hydrogen Bonds of Some Alkyl Derivatives. Chem. Zvesti 1969, 691, 687–691.

103. Frost, R.L.; Scholz, R.; Lõpez, A. Raman and infrared spectroscopic characterization of the arsenate-bearing mineral tangdanite– and in comparison with the discredited mineral clinotyrolite. J. Raman Spectrosc. 2015, 46, 920–926. [CrossRef]

104. Rémazeilles, C.; Refait, P. Fe(II) hydroxycarbonate Fe2(OH)2CO3 (chukanovite) as iron corrosion product: Synthesis and study by Fourier Transform Infrared Spectroscopy. Polyhedron 2009, 28, 749–756. [CrossRef]

105. Litasov, K.; Ohtani, E. Systematic Study Of Hydrogen Incorporation Into Fe-bearing Wadsleyite and Water Storage Capacity Of The Transition Zone. AIP Conf. Proc. 2008, 987, 113. [CrossRef]

106. Walker, A.M.; Demouchy, S.; Wright, K. Computer modelling of the energies and vibrational properties of hydroxyl groups in α- and β-Mg2SiO4. Eur. J. Mineral. 2006, 18, 529–543. [CrossRef]

107. Shi, G.A.; Saboktakin, M.; Stavola, M.; Pearton, S.J. “Hidden hydrogen” in as-grown ZnO. Appl. Phys. Lett. 2004, 85, 5601. [CrossRef]

108. Herklotz, F.; Chaplygin, I.; Lavrov, E.V.; Neiman, A.; Reeves, R.J.; Allen, M.W. Bistability of a hydrogen defect with a vibrational mode at 3326 cm−1 in ZnO. Phys. Rev. B 2019, 99, 115203. [CrossRef]

109. Som, T.; Karmakar, B. Structure and properties of low-phonon antimony glasses and nano glass-ceramics in K2O–B2O3–Sb2O3 system. J. Non. Cryst. Solids 2010, 356, 987–999. [CrossRef]

110. Wei, J.; Zhao, L.; Peng, S.; Shi, J.; Liu, Z.; Wen, W. Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects. J. Sol-Gel Sci. Technol. 2008, 47, 311–315. [CrossRef]

111. Cai, C.B.; Tao, Y.Y.; Wang, B.; Wen, M.Q.; Yang, H.W.; Cheng, Y.J. Investigating the adsorption process of isoamyl alcohol vapor onto silica gel with near-infrared process analytical technology. Spectrosc. Lett. 2014, 48, 190–197. [CrossRef]

112. Kakuda, H.; Okada, T.; Hasegawa, T. Temperature-Induced Molecular Structural Changes of Linear Poly(ethylene imine) in Water Studied by Mid-Infrared and Near-Infrared Spectroscopies. J. Phys. Chem. B 2009, 113, 13910–13916. [CrossRef]

113. Rubenthaler, G.L.; Pomeranz, Y. Near-Infrared reflectance spectra of hard red winter wheats varying widely in protein content and breadmaking potential. Cereal Chem. 1987, 64, 407–411.

114. Awatani, T.; Midorikawa, H.; Kojima, N.; Ye, J.; Marcott, C. Morphology of water transport channels and hydrophobic clusters in Nafion from high spatial resolution AFM-IR spectroscopy and imaging. Electrochem. Commun. 2013, 30, 5–8. [CrossRef]

115. Frost, R.L.; Erickson, K.L.; Cˇ ejka, J.; Reddy, B.J. A Raman spectroscopic study of the uranyl sulphate mineral johannite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2702–2707. [CrossRef]

116. Wenz, J.J. Influence of steroids on hydrogen bonds in membranes assessed by near infrared spectroscopy. Biochim. Biophys. Acta—Biomembr. 2021, 1863, 183553. [CrossRef] [PubMed]

117. Mastrapa, R.M.E.; Moore, M.H.; Hudson, R.L.; Ferrante, R.L.; Brown, R.H.; Mastrapa, R.M.E.; Moore, M.H.; Hudson, R.L.; Ferrante, R.L.; Brown, R.H. Proton Irradiation of Crystalline Water Ice: Timescales for Amorphization in the Kuiper Belt. DPS 2005, 37, 745.

118. Parrott, L.J.; Geiker, M.; Gutteridge, W.A.; Killoh, D. Monitoring Portland cement hydration: Comparison of methods. Cem. Concr. Res. 1990, 20, 919–926. [CrossRef]

119. Sha, W.; O’Neill, E.A.; Guo, Z. Differential scanning calorimetry study of ordinary Portland cement. Cem. Concr. Res. 1999, 29, 1487–1489. [CrossRef]

120. Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 2005, 35, 609–613. [CrossRef]

121. Swaddiwudhipong, S.; Chen, D.; Zhang, M.H. Simulation of the exothermic hydration process of Portland cement. Adv. Cem. Res. 2015, 14, 61–69. [CrossRef]

122. Fu, Y.F.; Wong, Y.L.; Tang, C.A.; Poon, C.S. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures—-Part I: Thermal cracking around single inclusion. Cem. Concr. Compos. 2004, 26, 113–126. [CrossRef]

123. Shui, Z.H.; Zhang, R.; Chen, W.; Xuan, D.X. Effects of mineral admixtures on the thermal expansion properties of hardened cement paste. Constr. Build. Mater. 2010, 24, 1761–1767. [CrossRef]

124. Shimasaki, I.; Rokugo, K.; Morimoto, H. On thermal expansion coefficient of concrete at very early age. In Proceedings of International, Workshop on Control of Cracking in Early-Age Concrete; Tohoku University: Sendai, Japan, 1999.

125. Ghabezloo, S.; Sulem, J.; Saint-Marc, J. The effect of undrained heating on a fluid-saturated hardened cement paste. Cem. Concr. Res. 2009, 39, 54–64. [CrossRef]

126. Abbasnia, R.; Shekarchi, M.; Ahmadi, J. Evaluation of concrete drying shrinkage related to moisture loss. ACI Mater. J. 2013, 110, 269–277. [CrossRef]

127. Parveen, S.; Rana, S.; Fangueiro, R. Macro- and nanodimensional plant fiber reinforcements for cementitious composites. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites; Savastano Junior, H., Fiorelli, J., dos Santos, S.F., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 343–382. [CrossRef]

128. Larosche, C.J. Types and causes of cracking in concrete structures. Fail. Distress Repair Concr. Struct. 2009, 57–83. [CrossRef]

129. Jianxia, S. Durability Design of Concrete Hydropower Structures. Compr. Renew. Energy 2012, 6, 377–403. [CrossRef]

130. Demirboga, R.; Farhan, K.Z. Palm oil fuel ash (POFA). Sustainable Concrete Made with Ashes and Dust from Different Sources; Springer: Berlin/Heidelberg, Germany, 2022; pp. 279–330. [CrossRef]

131. Muthukrishnan, S.; Gupta, S.; Kua, H.W. Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theor. Appl. Fract. Mech. 2019, 104, 102376. [CrossRef]

132. Bagheri, A.R.; Alibabaie, M.; Babaie, M. Reduction in the permeability of plastic concrete for cut-off walls through utilization of silica fume. Constr. Build. Mater. 2008, 22, 1247–1252. [CrossRef]

133. Bentz, D.P.; Jensen, O.M.; Coats, A.M.; Glasser, F.P. Influence of silica fume on diffusivity in cement-based materials: I. Experimen- tal and computer modeling studies on cement pastes. Cem. Concr. Res. 2000, 30, 953–962. [CrossRef]

134. Japanese Standards Association. (JSA). Japanese Industrial Standards (JIS) R 5201—Physical Testing Methods for Cement; Japanese Standards Association: Tokyo, Japan, 2019; p. 107.

135. Dhanoa, M.S.; Barnes, R.J.; Lister, S.J. Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る