リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Earwig preying on ambrosia beetle: Evaluating predatory process and prey preference」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Earwig preying on ambrosia beetle: Evaluating predatory process and prey preference

Jiang, Zi‐Ru Kajimura, Hisashi 名古屋大学

2020.09

概要

Earwigs (Dermaptera), such as Forficula auricularia L., are important euryphagous predators for a wide variety of prey and can markedly influence the populations of orchard pests. Most previous studies on earwig feeding behaviour have not used adult beetles of the prey species; few researchers have focused on prey preference in earwigs. Some fragments of beetle exoskeleton and an earwig adult, Anisolabella marginalis (Dohrn), were found in the same cage, where adults of ambrosia beetle, Euwallacea interjectus (Blandford), were emerging from the logs of a fig tree infected with Ceratocystis canker (fig wilt disease). Thus, A. marginalis was suspected of being a predator of E. interjectus. To shed light on this issue, in the laboratory, we set up a test arena and observed and recorded behavioural interactions between A. marginalis and E. interjectus. E. interjectus was collected from the logs of fig trees and reared on an artificial diet, along with six different ambrosia beetle species, which were collected from a trap (baited with ethanol) and a fallen maple tree. A series of laboratory experiments demonstrated that A. marginalis is actually a predator of E. interjectus and other species of ambrosia beetle, indicating its a potential for use in effective pest control in the field. The predators frequently consume and tend to select their prey depending on prey size, rather than sex and beetle species. Furthermore, earwigs have alternative predatory strategies for dealing with seven different species, although they use their forceps to cut the body of most tested beetles.

この論文で使われている画像

参考文献

271

Aoki, T., Smith, J. A., Kasson, M. T., Freeman, S., Geiser, D. M., Geering, A. D. W., & O’ Donnell, K.

272

(2019). Three novel ambrosia Fusarium clade species producing clavate macroconidia known

273

(F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea

274

spp. (Coleoptera: Scolytinae) on woody hosts, Mycologia, 111, 919–935.

275

276

277

278

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear Mixed-effects Models Using

Eigen and S4. R Package Version, 1, 1–7.

Berec, L., Maxin, D., & Bernhauerová, V. (2016). Male-killing bacteria as agents of insect pest control.

Journal of Applied Ecology, 53, 1270–1279.

279

Burton, M., & Burton, R. (2002). Earwigs. In P. Bernabeo (Ed.), International wildlife

280

encyclopedia (pp. 738–740), (3rd edn.). New York, NY, USA: Marshall Cavendish Corporation.

281

Carroll, D. P., Walker, J. T. S., & Hoyt, S. C. (1985). European earwigs (Dermaptera: Forficulidae) fail

282

to control apple aphids on bearing apple trees and woolly apple aphids (Homoptera: Aphididae)

283

in apple rootstock stool beds. Journal of Economic Entomology, 78, 972–974.

284

285

Cross, J., Fountain, M., Marko, V., & Nagy, C. (2015). Arthropod ecosystem services in apple orchards

and their economic benefits. Ecological Entomology, 40, 82–96.

286

De Winter, J. C. F., Gosling, S. D., & Potter, J. (2016). Comparing the Pearson and Spearman

287

correlation coefficients across distributions and sample sizes: A tutorial using simulations and

288

empirical data. Psychological Methods, 21, 273–290.

289

Dib, H., Sauphanor, B., & Capowiez, Y. (2017). Report on the life history traits of the generalist

290

predator Forficula auricularia (Dermaptera Forficulidae) in organic apple orchards in

291

southeastern France. The Canadian Entomologist, 149, 56–72.

292

Ferrari, M. C., Trowell, J. J., Brown, G. E., & Chivers, D. P. (2005). The role of learning in the

293

development of threat-sensitive predator avoidance by fathead minnows. Animal Behaviour, 70,

294

777–784.

295

Fielding, N. J., O'Keefe, T., & King, C. J. (1991). Dispersal and host‐finding capability of the predatory

296

beetle Rhizophagus grandis Gyll. (Col., Rhizophagidae). Journal of Applied Entomology, 112,

297

89–98.

298

Grégoire, J. C., Merlin, J., Pasteels, J. M., Jaffuel, R., Vouland, G., & Schvester, D. (1985). Biocontrol

299

of Dendroctonus micans by Rhizophagus grandis Gyll. (Col., Rhizophagidae) in the Massif

11/25

300

Central (France): A first appraisal of the mass-rearing and release methods. Zeitschrift für

301

angewandte Entomologie, 99, 182–190.

302

303

Griffiths, C. L. (2018). First record of the maritime earwig Anisolabis maritima (Bonelli, 1832)

(Dermaptera: Anisolabididae) from South Africa. BioInvasions Records, 7, 459–462.

304

Hansen, K. (1983). Reception of bark beetle pheromone in the predaceous clerid beetle, Thanasimus

305

formicarius (Coleoptera: Cleridae). Journal of Comparative Physiology, 150, 371–378.

306

Hayashi, M., Morimoto, K., & Kimoto, S. (1984). The Coleoptera of Japan in color. In A. Nobuchi

307

308

309

(Ed.), Scolytidae, (2nd edn.) (pp. 362–369; IV). Hoikusha: Osaka. [in Japanese].

He, X. Z., Wang, Q., & Xu, J. (2008). European earwig as a potential biological control agent of apple

leaf-curling midge. New Zealand Plant Protection, 61, 43–349.

310

Hong, S. Y., Jeong, D. S., Gil, H. W., Yang, J. O., Lee, E. Y., & Hong, S. Y. (2009). The estimation of

311

pesticide exposure in depression scores: in case of Korean orchard farmers. Journal of Pest

312

Science, 82, 261–265.

313

314

IBM Corporation (2010). IBM SPSS Statistics for Windows, version 19.0. Chicago, Li, USA: IBM

Corp.

315

IJianJi Corporation (2017). PROC user's manual, version 3.0. Guangzhou, China: Quying Co., Ltd.

316

Kajii, C., Morita, T., Jikumaru, S., Kajimura, H., Yamaoka, Y., & Kuroda, K. (2013). Xylem

317

dysfunction in Ficus carica infected with wilt fungus Ceratocystis ficicola and the role of the

318

vector beetle Euwallacea interjectus. International Association of Wood Anatomists Journal, 34,

319

301–312.

320

Kajitani, Y. (1999). The dispersal period of the Xyleborus interjectus (Coleoptera, Scolytidae), a vector

321

of the fig Ceratocystis canker, and the organ carrying the causal fungus. Annals of the

322

Phytopathological Society of Japan, 65, 377. [in Japanese].

323

Kajitani, Y., & Yamanaka, M. (2001). Efficacy of various insecticide against the Xyleborus interjectus

324

(Coleoptera, Scolytidae), a vector of the fig Ceratocystis canker, and carrying the causal fungus.

325

Annals of the Phytopathological Society of Japan, 67, 220. [in Japanese].

326

327

Kajitani, Y., & Masuya, H. (2011). Ceratocystis fcicola sp. nov., a causal fungus of fig canker in Japan.

Mycoscience, 52, 349–353.

328

Kenis, M., Wermelinger, B., & Gre´goire, J. C. (2004). Research on parasitoids and predators of

329

Scolytidae–a review. In F. Lieutier, K. R. Day, A. Battisti, J. C. Gre´goire, & H. F. Evans, (Eds).

12/25

330

Bark and wood boring insects in living trees in Europe, a synthesis (pp. 237–290). Dordrecht,

331

The Netherlands: Springer.

332

Khanday, A. L., Buhroo, A. A., Singh, S., Ranjith, A. P., & Mazur, S. (2018). Survey of predators

333

associated with bark beetles (Coleoptera: Curculionidae: Scolytinae) with redescription of

334

Platysoma rimarium Erichson, 1834 from Kashmir, India. Journal of Asia-Pacific Biodiversity,

335

11, 353–360.

336

Körner, M., Vogelweith, F., Foitzik, S., & Meunier, J. (2017). Condition-dependent trade-off between

337

weapon size and immunity in males of the European earwig. Scientific Reports, 7, 7988.

338

Landi, L., Braccini, C. L., Knížek, M., Pereyra, V. A., & Marvaldi, A. E. (2019). A newly detected

339

exotic ambrosia beetle in Argentina: Euwallacea interjectus (Coleoptera: Curculionidae:

340

Scolytinae). Florida Entomologist, 102, 240–242.

341

Logan, D. P., Maher, B. J., & Rowe, C. A. (2017). Predation of diaspidid scale insects on kiwifruit

342

vines by European earwigs, Forficula auricularia, and steel-blue ladybirds, Halmus chalybeus.

343

BioControl, 62, 469–479.

344

345

Martinou, A. F., Seraphides, N., & Stavrinides, M. C. (2014). Lethal and behavioral effects of

pesticides on the insect predator Macrolophus pygmaeus. Chemosphere, 96, 167–173.

346

Maser, C., & Trappe, J. (1984). The seen and unseen world of the fallen tree. Portland: U.S.

347

Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment

348

Station.

349

Mizuno, T., & Kajimura, H. (2009). Effects of ingredients and structure of semi-artificial diet on the

350

reproduction of an ambrosia beetle, Xyleborus pfeili (Ratzeburg) (Coleoptera: Curculionidae:

351

Scolytinae). Applied Entomology and Zoology, 44, 363–370.

352

Moral, R. A., Demétrio, C. G. B., Hinde, J., Godoy, W. A. C., & Fernandes, F. S. (2017).

353

Parasitism-mediated prey selectivity in laboratory conditions and implications for biological

354

control. Basic and Applied Ecology, 19, 67–75.

355

Morita, T., Hara, H., Mise, D., & Jikumaru, S. (2012). A case study of Ceratocystis canker epidemic in

356

relation with Euwallacea interjectus infestation. Annual Report of the Kansai Plant Protection

357

Society, 54, 29–34. [in Japanese with English summary].

358

Mueller, T. F., Blommers, L. H. M., & Mols, P. J. M. (1988). Earwig (Forficula auricularia) predation

359

on the woolly apple aphid, Eriosoma lanigerum. Entomologia Experimentalis et Applicata, 47,

13/25

360

361

362

145–152.

Mukherjee, S., & Heithaus, M. R. (2013). Dangerous prey and daring predators: a review. Biological

Reviews, 88, 550–563.

363

Naranjo-Guevara, N., Peñaflor, M. F. G., Cabezas-Guerrero, M. F., & Bento, J. M. S. (2017). Nocturnal

364

herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder.

365

The Science of Nature, 104, 77.

366

Nicholas, A. H., Thwaite, W. G., & Spooner-Hart, R. (1999). Arthropod abundance in an Australian

367

apple orchard under mating disruption and supplementary insecticide treatments for codling

368

moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Australian Journal of Entomology, 38,

369

23–29.

370

Nicholas, A. H., Spooner-Hart, R. N., & Vickers, R. A. (2005). Abundance and natural control of the

371

woolly aphid Eriosoma lanigerum in an Australian apple orchard IPM program. BioControl, 50,

372

271–291.

373

Nishikawa, M. (2009). Record of earwigs on Rishiri and Rebun Islands, northern Hokkaido, with

374

references on dermaptera of Hokkaido, Japan. Rishiri Studies, 28, 61–65. [in Japanese].

375

Nitta, H., Morita, T., Wakasaki, Y., & Kakogawa, K. (2005). Relationship between Ceratocystis canker

376

and ambrosia beetle in fig orchards. Annual Report of the Kansai Plant Protection Society, 47,

377

95–98.

378

Nunes, G. D. S., Dantas, T. A. V., Souza, M. D. S. D., Nascimento, I. N., Batista, J. D. L., & Malaquias,

379

J. B. (2019). Life stage and population density of Plutella xylostella affect the predation

380

behavior of Euborellia annulipes. Entomologia Experimentalis et Applicata, 167, 544–552.

381

Pekár, S., García, L. F., & Viera, C. (2017). Trophic niches and trophic adaptations of prey-specialized

382

spiders from the neotropics: A guide. In C. Viera, & M. Gonzaga (Eds.), Behaviour and ecology

383

of spiders (pp. 247–274). Cham, Switzerland: Springer.

384

385

386

387

R Core Team (2019). R: a language and environment for statistical computing. Vienna, Austria: R

Foundation for Statistical Computing.

Raffa, K. F., & Dahlsten, D. L. (1995). Differential responses among natural enemies and prey to bark

beetle pheromones. Oecologia, 102, 17–23.

388

Ranger, C. M., Reding, M. E., Schultz, P. B., Oliver, J. B., Frank, S. D., Addesso, K. M., … Krause, C.

389

(2016). Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera:

14/25

390

Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest

391

Management, 7, 1–23.

392

393

394

395

Robinson, A. S. (1983). Sex-ratio manipulation in relation to insect pest control. Annual review of

genetics, 17, 191–214.

Samuelson, G. A. (1981). A synopsis of Hawaiian Xyleborini (Coleoptera: Scolytidae). Pacific Insects,

23, 50–92.

396

Stavrinides, M. C., & Mills, N. J. (2009). Demographic effects of pesticides on biological control of

397

Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus

398

occidentalis). Biological Control, 48, 267–273.

399

400

401

402

Tømmerås, B. Å. (1988). The clerid beetle, Thanasimus formicarius, is attracted to the pheromone of

the ambrosia beetle, Trypodendron lineatum. Experientia, 44, 536–537.

Travis, J., Keen, W. H., & Juilianna, J. (1985). The role of relative body size in a predator-prey

relationship between dragonfly naiads and larval anurans. Oikos, 45, 59–65.

403

Wegensteiner, R., Wermelinger, B., & Herrmann, M. (2015). Natural enemies of bark beetles: predators,

404

parasitoids, pathogens, and nematodes. In F. E. Vega, & R. W. Hofstetter (Eds.), Bark beetles:

405

biology and ecology of native and invasive species (pp. 247–304). Oxford, MS, USA: Elsevier.

15/25

406

407

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

408

Appendix S1. Predatory processes in the present study.

409

Table S1. The number of ambrosia beetles provided for earwig individuals on each date.

410

16/25

411

TABLE 1 Information on the ambrosia beetles used in this experiment

Body length

(mm)a

Collection

methods

2.0–2.6

Trap

13/0

0/13/0

XC

2.4–2.7

Maple trees or

Trap

6/0

0/6/0

XB

2.5–3.0

Maple trees or

Trap

21/25

0/28/18

2.6–3.0

Rearing artificial

8/0

diets

3/5/0

E. interjectus

3.4–3.8

Fig trees or

Rearing artificial 79/29

diets

31/29/48

Scolytoplatypus

mikado

2.9–3.8

Maple trees or

Trap

36/1

30/6/1

2.7–4.0

Maple trees or

Trap

42/3

32/10/3

3.5–4.1

Trap

6/0

0/6/0

3.6–4.0

Maple trees or

Trap

9/0

0/9/0

3.3–4.5

Maple trees or

Trap

17/0

0/17/0

237/58

96/129/70

Beetle species

Abbreviation Sex

Xylosandrus

germanus

XG

Xylosandrus

crassiusculus

Xylosandrus

brevis

Euwallacea

interjectus

EI

SM

S. mikado

Euwallacea

validus

EV

Scolytoplatypus

tycon

ST

S. tycon

Total

Hayashi et al., 1984.

412

413

17/25

No choice/choice AM1/AM2/AM3

414

415

TABLE 2 Summaries of GLMMs with predator as random variable and attacking duration or

percentage of beetles consumed as target variable

Estimate/

Variance

Std. Error/

Std. Dev.

Z-value

Pr(>|z|)

Intercept

−0.01476

0.46382

−0.032

0.975

Body size

0.50924

0.06280

8.109

< 0.001

0.4655

0.6823

0.6023

0.3854

1.563

0.118

0.4829

0.1296

3.725

< 0.001

0.1417

0.3764

Parametric coefficients

Attacking duration (AIC = 872.7)

Fixed effects

Random effect

Predatora

Percentage of beetles consumed (AIC = 227.3)

Fixed effects

Intercept

Body size

Random effect

Predatora

416

417

418

Estimate for the random effect of predator.

X. brevis (♀), E. interjectus (♀) and S. mikado (♀&♂).

18/25

419

420

Figure 1 Layout of the predatory processes between predator and prey

421

19/25

422

423

Figure 2 Process of earwig preying on ambrosia beetle.

424

(a), Simultaneous release of predator and prey; (b), walking or staying put; (c), touching the beetle

425

body with antenna; (d), cutting it with forceps; (e), eating the contents with mouth organs; (f), finishing

426

(leaving exoskeleton after completion of predation)

427

20/25

428

429

Figure 3 Pre-attack duration in each beetle species in the no-choice test (total n = 139).

430

The overall difference in medians among the species (n ≥ 5) is not significant at P > .05 using

431

Kruskal–Wallis test. SD, standard deviation

432

21/25

433

434

Figure 4 Attack duration in each beetle species in the no-choice test (total n = 129).

435

The overall difference in medians among the species (n ≥ 5) is significant at P < .01 using

436

Kruskal–Wallis test. Means with different letters (a, b) are significantly different at the 1% level. SD,

437

standard deviation.

438

22/25

439

440

Figure 5 Percentage of male and female beetles consumed in each beetle species in the no-choice test

441

(total n = 149).

442

n.s., not significant at P > .05 using Mann–Whitney U test; SD, standard deviation

443

23/25

444

445

446

Figure 6 Percentage of alive or dead (within 2 days) cases of beetles consumed in each beetle species

447

in the no-choice test (total n = 237).

448

*: Statistically significant at P < .05 using Mann–Whitney U test; n.s., not significant at P > .05 using

449

Mann–Whitney U test; SD, standard deviation

450

24/25

451

452

Figure 7 Prey preference between two different species in the choice test (total n = 58).

453

*: Significant at P < .01 using Fisher's exact test

25/25

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る