リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract

Cheubong, Chehasan Sunayama, Hirobumi Takano, Eri Minami, Hideto Takeuchi, Toshifumi 神戸大学

2023.10.07

概要

In this study, we prepared molecularly imprinted polymer nanogels with good affinity for the Fc domain of immunoglobulin G (IgG) using 4-(2-methacrylamidoethylaminomethyl) phenylboronic acid as a modifiable functional monomer for post-imprinting in-cavity modification of a fluorescent dye (F-Fc-MIP-NGs). A novel nanogel-based biotic/abiotic hybrid sandwich detection system for porcine serum albumin (PSA) was developed using F-Fc-MIP-NGs as an alternative to a secondary antibody for fluorescence detection and another molecularly imprinted polymer nanogel capable of recognizing PSA (PSA-MIP-NGs) as a capturing artificial antibody, along with a natural antibody toward PSA (Anti-PSA) that was used as a primary antibody. After incubation of PSA and Anti-PSA with F-Fc-MIP-NGs, the PSA/Anti-PSA/F-Fc-MIP-NGs complex was captured by immobilized PSA-MIP-NGs for fluorescence measurements. The analysis time was less than 30 min for detecting pork adulteration of 0.01 wt% in halal beef and lamb meats. The detection limit was comparable to that of frequently used immunoassays. Therefore, we believe that this method is a promising, sensitive, and rapid detection method for impurities in real samples and could be a simple, inexpensive, and rapid alternative to conventional methods that have cumbersome procedures of 4 hours or more.

この論文で使われている画像

参考文献

Experimental section

The abiotic/biotic antibody hybrid sandwich detection was performed using the following procedure: (1) PSA-MIP-NGs were

immobilized on a sensor chip, and the blocking process was

performed using 0.5% w/v BSA; (2) the cocktail solution was

prepared by mixing equal volumes of PBS containing 0.1 μg

mL−1 of Anti-PSA with 100 μg mL−1 of F-Fc-MIP-NGs; (3) PSA

was then added to the reaction mixture, followed by incubation

for 30 min; (4) the premixed cocktail solution was dropped

onto the PSA-MIP-NGs-immobilized sensor chip and incubated

for 30 min; (5) after washing with pure water (3 × 500 μL) and

PBS (3 × 500 μL), the sensor chip was inserted into a designed

flat-type pipette tip, the fluorescence intensity was measured

using a custom-made liquid-handling robot equipped with a

fluorescence microscope. The relative fluorescence intensity

was calculated using of the following equation: (F − F0)/F0,

where F0 and F are the fluorescence intensities before and

after incubation with PSA, respectively.

Meat extract samples were prepared. Chopped raw meat

(1 g) was mixed with 5 mL PBS, and then homogenized using

a benchtop homogenizer (Polytron PT 1600 E, Kinematica AG,

Luzern, Switzerland) for 2 min (10 000 rpm), followed by centrifugation for 30 min at 4 °C (3 × 16 000g). The clear supernatant was collected and filtered thrice through a 0.2 µm

polytetrafluoroethylene (PTFE) filter (DISMIC-13HP, Toyo

Roshi Kaisha Ltd, Tokyo, Japan). The filtered meat extract

samples were then used to measure total protein concentration

using a NanoDrop One UV/Vis Spectrophotometer at 280 nm.

The meat extract samples were then stored at −20 °C until use.

Author contributions

H. S. and T. T. conceived the project. C. C., H. S., E. T., and

Y. K. performed the experiments. All authors contributed to

the analysis and the interpretation of the results. The manuscript was written by C. C. and revised by H. S. and T. T. All

authors have approved the final version of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JSPS KAKENHI (JP 18H05398 and

JP 23H01775) and the Research Program of “Dynamic Alliance

This journal is © The Royal Society of Chemistry 2023

1 (a) S. Qureshi, M. Jamal, M. Qureshi, M. Rauf, B. Syed,

M. Zulfiqar and N. Chand, J. Anim. Plant Sci., 2012, 2292,

79; (b) E. Izberk-Bilgin and C. C. Nakata, Bus. Horiz., 2016,

59, 285–292.

2 O. Al-Jowder, E. K. Kemsley and R. H. Wilson, Food Chem.,

1997, 59, 195–201.

3 (a) B. V. Chikkaveeraiah, A. A. Bhirde, N. Y. Morgan,

H. S. Eden and X. Chen, ACS Nano, 2012, 6, 6546–6561;

(b) S. Teepoo, N. Mhadbamrung, S. Moonmungmee and

C. Cheubong, J. Bionanosci., 2016, 10, 63–68.

4 (a) B. Prieto-Simón, N. M. Bandaru, C. Saint and

N. H. Voelcker, Biosens. Bioelectron., 2015, 67, 642–648;

(b) J. H. Oh and M. K. Park, Food Control, 2016, 59, 780–

786.

5 (a) F. C. Chen and Y. H. Hsieh, J. AOAC Int., 2000, 83, 79–

85; (b) L. Liu, F. C. Chen, J. L. Dorsey and Y.-H. P. Hsieh, J.

Food Sci., 2006, 71, 1–6; (c) S. A. Lim and M. U. Ahmed,

Food Chem., 2016, 206, 197–203; (d) B. Kuswandi,

A. A. Gani and M. Ahmad, Food Biosci., 2017, 19, 1–6;

(e) C. P. Thienes, J. Masiri, L. A. Benoit, B. Barrios-Lopez,

S. A. Samuel, D. P. Cox, A. P. Dobritsa, C. Nadala and

M. Samadpour, J. AOAC Int., 2018, 101, 817–823;

(f ) J. Mandli, I. El Fatimi, N. Seddaoui and A. Amine, Food

Chem., 2018, 255, 380–389.

6 (a) K. Haupt, Molecular Imprinting, Springer-Verlag, Berlin,

2012; (b) R. Schirhagl, Anal. Chem., 2014, 86, 250–261;

(c) T. Takeuchi, T. Hayashi, S. Ichikawa, A. Kaji, M. Masui,

H. Matsumoto and R. Sasao, Chromatography, 2016, 37, 43–

64; (d) M. Komiyama, T. Mori and K. Ariga, Bull. Chem. Soc.

Jpn., 2018, 91, 1075–1111; (e) K. Haupt, P. X. M. Rangel and

B. Tse Sum Bui, Chem. Rev., 2020, 120(17), 9554–9582;

(f ) Y. He and Z. Lin, J. Mater. Chem. B, 2022, 10, 6571–6589;

(g) B. Tse Sum Bui, A. Mier and K. Haupt, Small, 2023, 19,

2206453.

7 (a) Y. Inoue, A. Kuwahara, K. Ohmori, H. Sunayama,

T. Ooya and T. Takeuchi, Biosens. Bioelectron., 2013, 48,

113–119; (b) Y. Suga, H. Sunayama, T. Ooya and

T. Takeuchi, Chem. Commun., 2013, 49, 8450–8452;

(c) T. Guo, Q. L. Deng, Z. G. Fang, C. C. Liu, X. Huang and

S. Wang, Biosens. Bioelectron., 2015, 74, 498–503;

(d) L. Chen, X. Wang, W. Lu, X. Wu and J. Li, Chem. Soc.

Rev., 2016, 45, 2137–2211; (e) G. Rijun, J. Hui, G. Huijun

and W. Zonghua, Biosens. Bioelectron., 2018, 100, 56–70;

(f ) C. Lucia, P. Chiara, B. Paolo and A. M. Bossia, Talanta,

2018, 178, 772–779.

8 (a) T. Takeuchi, Y. Kitayama, R. Sasao, T. Yamada, K. Toh,

Y. Matsumoto and K. Kataoka, Angew. Chem., Int. Ed., 2017,

56, 7088–7092; (b) T. Morishita, A. Yoshida, N. Hayakawa,

K. Kiguchi, C. Cheubong, H. Sunayama, Y. Kitayama and

Nanoscale, 2023, 15, 15171–15178 | 15177

View Article Online

Open Access Article. Published on 24 August 2023. Downloaded on 10/4/2023 2:42:14 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Paper

10

11

12

13

T. Takeuchi, Langmuir, 2020, 36, 10674–10682;

(c) N. Hayakawa, T. Yamada, Y. Kitayama and T. Takeuchi,

ACS Appl. Polym. Mater., 2020, 2(4), 1465–1473.

C. Cheubong, A. Yoshida, Y. Mizukawa, N. Hayakawa,

M. Takai, T. Morishita, Y. Kitayama, H. Sunayama and

T. Takeuchi, Anal. Chem., 2020, 92, 6401–6407.

C. Cheubong, E. Takano, Y. Kitayama, H. Sunayama,

K. Minamoto, R. Takeuchi, S. Furutani and T. Takeuchi,

Biosens. Bioelectron., 2021, 172, 112775.

(a) T. Takeuchi, T. Mori, A. Kuwahara, T. Ohta, A. Oshita,

H. Sunayama, Y. Kitayama and T. Ooya, Angew. Chem., Int. Ed.,

2014, 53, 12765–12770; (b) T. Takeuchi and H. Sunayama,

Chem. Commun., 2018, 54, 6243–6251; (c) H. Sunayama and

T. Takeuchi, Chromatography, 2021, 42, 73–81; (d) K. Mori,

M. Hirase, T. Morishige, E. Takano, H. Sunayama,

Y. Kitayama, S. Inubushi, R. Sasaki, M. Yashiro and

T. Takeuchi, Angew. Chem., Int. Ed., 2019, 58, 1612–1615;

(e) T. Takeuchi, K. Mori, H. Sunayama, E. Takano,

Y. Kitayama, T. Shimizu, Y. Hirose, S. Inubushi, R. Sasaki and

H. Tanino, J. Am. Chem. Soc., 2020, 142, 6617–6624.

(a) H. Sunayama, T. Ooya and T. Takeuchi, Biosens.

Bioelectron., 2010, 26, 458–462; (b) H. Sunayama, T. Ohya

and T. Takeuchi, Chem. Commun., 2014, 50, 1347;

(c) H. Matsumoto, H. Sunayama, Y. Kitayama, E. Takano

and T. Takeuchi, Sci. Technol. Adv. Mater., 2019, 20, 305–

312; (d) K. Tsutsumi, H. Sunayama, Y. Kitayama, E. Takano,

Y. Nakamachi, R. Sasaki and T. Takeuchi, Adv. NanoBiomed

Res., 2021, 1, 2000079.

Y. Li, Y. Sun, R. C. Beier, H. Lei, S. J. Gee, B. D. Hammock,

H. Wang, Z. Wang, X. Sun, Y. Shen, J. Yang and Z. Xu,

Trends Anal. Chem., 2017, 88, 25–40.

15178 | Nanoscale, 2023, 15, 15171–15178

Nanoscale

14 (a) N. Bereli, G. Ertürk, M. A. Tümer, R. Say and A. Denizli,

Biomed. Chromatogr., 2013, 27, 599–607; (b) A. Tretjakov,

V. Syritski, J. Reut, R. Boroznjak, O. Volobujeva and

A. Öpik, Microchim. Acta, 2013, 180, 1433–1442;

(c) A. Tretjakov, V. Syritski, J. Reut, R. Boroznjak and

A. Öpik, Anal. Chim. Acta, 2016, 902, 182–188; (d) R. Bai,

Y. Sun, M. Zhao, Z. Han, J. Zhang, Y. Sun, W. Dong and

S. Li, Talanta, 2021, 226, 122160.

15 E. Moczko, A. Guerreiro, C. Cáceres, E. Piletska,

B. Sellergren and S. A. Piletsky, J. Chromatogr. B: Anal.

Technol. Biomed. Life Sci., 2019, 1124, 1–6.

16 N. Hayakawa, Y. Kitayama, K. Igarashi, Y. Matsumoto,

E. Takano, H. Sunayama and T. Takeuchi, ACS Appl. Mater.

Interfaces, 2022, 14, 16074–16081.

17 T. Saeki, E. Takano, H. Sunayama, Y. Kitayama and

T. Takeuchi, J. Mater. Chem. B, 2020, 8, 7987.

18 (a) K. L. Bennett, S. V. Smith, R. J. Truscott and

M. M. Sheil, Anal. Biochem., 1997, 245, 17–27;

(b) T. J. Kutzner, A. M. Higuero, M. Süßmair, J. Kopitz,

M. Hingar, N. Díez-Revuelta, G. G. Caballero, H. Kaltner,

I. Lindner, J. Abad-Rodríguez, D. Reusch and H. J. Gabius,

Biochim. Biophys. Acta, Gen. Subj., 2020, 1864, 129449.

19 (a) E. Takano, N. Shimura, Y. Ujima, H. Sunayama,

Y. Kitayama and T. Takeuchi, ACS Omega, 2019, 4, 1487–

1493; (b) E. Takano, N. Shimura, T. Akiba, Y. Kitayama,

H. Sunayama, K. Abe, K. Ikebukuro and T. Takeuchi,

Microchim. Acta, 2017, 184, 1595–1601.

20 (a) Q. R. Li, K. G. Yang, J. X. Liu, L. H. Zhang, Z. Liang,

Y. K. Zhang and S. Li, Microchim. Acta, 2016, 183, 345–352;

(b) Y. P. Qin, H. Y. Wang, X. W. He, W. Y. Li and

Y. K. Zhang, Talanta, 2018, 185, 620–627.

This journal is © The Royal Society of Chemistry 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る