リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparison between pystan and numpyro in Bayesian item response theory: evaluation of agreement of estimated latent parameters and sampling performance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparison between pystan and numpyro in Bayesian item response theory: evaluation of agreement of estimated latent parameters and sampling performance

Nishio, Mizuho Ota, Eiji Matsuo, Hidetoshi Matsunaga, Takaaki Miyazaki, Aki Murakami, Takamichi 神戸大学

2023.10.05

概要

Purpose: The purpose of this study is to compare two libraries dedicated to the Markov chain Monte Carlo method: pystan and numpyro. In the comparison, we mainly focused on the agreement of estimated latent parameters and the performance of sampling using the Markov chain Monte Carlo method in Bayesian item response theory (IRT). Materials and methods: Bayesian 1PL-IRT and 2PL-IRT were implemented with pystan and numpyro. Then, the Bayesian 1PL-IRT and 2PL-IRT were applied to two types of medical data obtained from a published article. The same prior distributions of latent parameters were used in both pystan and numpyro. Estimation results of latent parameters of 1PL-IRT and 2PL-IRT were compared between pystan and numpyro. Additionally, the computational cost of the Markov chain Monte Carlo method was compared between the two libraries. To evaluate the computational cost of IRT models, simulation data were generated from the medical data and numpyro. Results: For all the combinations of IRT types (1PL-IRT or 2PL-IRT) and medical data types, the mean and standard deviation of the estimated latent parameters were in good agreement between pystan and numpyro. In most cases, the sampling time using the Markov chain Monte Carlo method was shorter in numpyro than that in pystan. When the large-sized simulation data were used, numpyro with a graphics processing unit was useful for reducing the sampling time. Conclusion: Numpyro and pystan were useful for applying the Bayesian 1PL-IRT and 2PL-IRT. Our results show that the two libraries yielded similar estimation result and that regarding to sampling time, the fastest libraries differed based on the dataset size.

この論文で使われている画像

参考文献

Cappelleri JC, Jason Lundy J, Hays RD. 2014. Overview of classical test theory

and item response theory for the quantitative assessment of items in developing patient-reported outcomes measures. Clinical Therapeutics 36:648–662

DOI 10.1016/J.CLINTHERA.2014.04.006.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M,

Guo J, Li P, Riddell A. 2017. Stan: a probabilistic programming language. Journal of

Statistical Software 76:1–32 DOI 10.18637/jss.v076.i01.

Choi SW, Reise SP, Pilkonis PA, Hays RD, Cella D. 2010. Efficiency of static and

computer adaptive short forms compared to full-length measures of depressive

symptoms. Quality of Life Research 19:136 DOI 10.1007/S11136-009-9560-5.

Depaoli S, Clifton JP, Cobb PR. 2016. Just another gibbs sampler (JAGS). Journal of

Educational and Behavioral Statistics 41:628–649 DOI 10.3102/1076998616664876.

Embretson SE, Reise SP. 2000. Item response theory for psychologists. Taylor and Francis

DOI 10.4324/9781410605269.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2013. Bayesian data

analysis. New York: Chapman and Hall/CRC DOI 10.1201/B16018.

Gershon RC, Lai JS, Bode R, Choi S, Moy C, Bleck T, Miller D, Peterman A, Cella D.

2012. Neuro-QOL: quality of life item banks for adults with neurological disorders:

item development and calibrations based upon clinical and general population

testing. Quality of Life Research 21:475–486 DOI 10.1007/S11136-011-9958-8.

Hays RD, Morales LS, Reise SP. 2000. Item response theory and health outcomes

measurement in the 21st century. Medical Care 38:II28–II242.

Kojita Y, Matsuo H, Kanda T, Nishio M, Sofue K, Nogami M, Kono AK, Hori

M, Murakami T. 2021. Deep learning model for predicting gestational age

after the first trimester using fetal MRI. European Radiology 31:3775–3782

DOI 10.1007/S00330-021-07915-9.

Lin LI-K. 1989. A concordance correlation coefficient to evaluate reproducibility.

Biometrics 45:268 DOI 10.2307/2532051.

Luo Y, Jiao H. 2017. Using the stan program for Bayesian item response theory. Educational and Psychological Measurement 78:384–408 DOI 10.1177/0013164417693666.

Nishio et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1620

18/19

Nishio M, Akasaka T, Sakamoto R, Togashi K. 2020. Bayesian statistical model of item

response theory in observer studies of radiologists. Academic Radiology 27:e45–e54

DOI 10.1016/J.ACRA.2019.04.014.

Nishio M, Kobayashi D, Matsuo H, Urase Y, Nishioka E, Murakami T. 2022. Bayesian

multidimensional nominal response model for observer study of radiologists.

Japanese Journal of Radiology 41:449–455 DOI 10.1007/S11604-022-01366-Y.

Nishio M, Koyama H, Ohno Y, Negi N, Seki S, Yoshikawa T, Sugimura K. 2016.

Emphysema quantification using ultralow-dose CT with iterative reconstruction

and filtered back projection. American Journal of Roentgenology 206:1184–1192

DOI 10.2214/AJR.15.15684.

Nishio M, Ota E, Matsuo H, Matsunaga T, Miyazaki A, Murakami T. 2023. Usefulness of pystan and numpyro in Bayesian item response theory. medRxiv.

DOI 10.1101/2023.03.29.23287903.

Phan D, Pradhan N, Jankowiak M. 2019. Composable effects for flexible and accelerated

probabilistic programming in NumPyro. ArXiv preprint. arXiv:1912.11554.

Python Software Foundation. 2023. pystan. Available at https://pypi.org/project/pystan/

(accessed on 21 March 2023).

Nishio et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1620

19/19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る