リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy

Imayoshi, Ayumi Lakshmi, Bhatraju Vasantha Ueda, Yoshihiro Yoshimura, Tomoyuki Matayoshi, Aki Furuta, Takumi Kawabata, Takeo 京都大学 DOI:10.1038/s41467-020-20372-0

2021

概要

Asymmetric synthesis of mechanically planar chiral rotaxanes and topologically chiral catenanes has been a long-standing challenge in organic synthesis. Recently, an excellent strategy was developed based on diastereomeric synthesis of rotaxanes and catenanes with mechanical chirality followed by removal of the chiral auxiliary. On the other hand, its enantioselective approach has been quite limited. Here, we report enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution of the racemates via remote asymmetric acylation of a hydroxy group in the axis component, which provides an unreacted enantiomer in up to >99.9% ee in 29% yield (the theoretical maximum yield of kinetic resolution of racemate is 50%). While the rotaxane molecules are expected to have conformational complexity, our original catalysts enabled to discriminate the mechanical chirality of the rotaxanes efficiently with the selectivity factors in up to 16.

この論文で使われている画像

参考文献

1.

2.

Frisch, H. L. & Wasserman, E. Chemical topology. J. Am. Chem. Soc. 83,

3789–3795 (1961).

Schill, G. Catenanes, Rotaxanes and Knots (Academic Press, New York, 1971).

NATURE COMMUNICATIONS | (2021)12:404 | https://doi.org/10.1038/s41467-020-20372-0 | www.nature.com/naturecommunications

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20372-0

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Kaida, Y., Okamoto, Y., Chambron, J.-C., Mitchell, D. K. & Sauvage, J.-P. The

separation of optically active copper (I) catenates. Tetrahedron Lett. 34,

1019–1022 (1993).

Yamamoto, C., Okamoto, Y., Schmidt, T., Jager, R. & Vögtle, F. Enantiomeric

resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and

pretzel-shaped molecules: observation of pronounced circular dichroism. J.

Am. Chem. Soc. 119, 10547–10548 (1997).

Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: from

Molecules to Machines (John Wiley & Sons, Inc., 2016).

Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and

catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

Leigh, D. A., Marcos, V. & Wilson, M. R. Rotaxane catalysts. ACS Catal. 4,

4490–4407 (2014).

Heard, A. W. & Goldup, S. M. Synthesis of a mechanically planar chiral

rotaxane ligand for enantioselective catalysis. Chem. 6, 994–1006 (2020).

Martinez-Cuezva, A., Saura-Sanmartin, A., Alajarin, M. & Berna, J.

Mechanically interlocked catalysts for asymmetric synthesis. ACS Catal. 10,

7719–7733 (2020).

Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L.

Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

Evans, N. H. Chiral catenanes and rotaxanes: fundamentals and emerging

applications. Chem. Eur. J. 24, 3101–3112 (2018).

Pairault, N. & Niemeyer, J. Chiral mechanically interlocked moleculesApplications of rotaxanes, catenates and molecular knots in stereoselective

chemosensing and catalysis. Synlett 29, 689–698 (2018).

Nakazono, K. & Takata, T. Mechanical chirality of rotaxanes: synthesis and

function. Symmetry 12, 144 (2020).

Maynard, J. R.-J.- & Goldup, S. M. Strategies for the synthesis of enantiopure

mechanically chiral molecules. Chem 6, 1914–1932 (2020).

Bordoli, R. J. & Goldup, S. M. An efficient approach to mechanically planar

chiral rotaxanes. J. Am. Chem. Soc. 136, 4817–4820 (2014).

Jinks, M. A. et al. Stereoselective synthesis of mechanically planar rotaxanes.

Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

Denis, M., Lewis, J. E. M., Modicom, F. & Goldup, S. M. An auxiliary

approach for the stereoselective synthesis of topologically chiral catenanes.

Chem 5, 1512–1520 (2019).

Mikata, Y. et al. Catalytic asymmetric synthesis and optical resolution of

planar chiral rotaxane. Chem. Lett. 36, 162–163 (2007).

Tian, C., Fielden, S. D. P., Pérez-Saavedra, B., Vitorica-Yrezabal, I. J. & Leigh,

A. D. Single-step enantioselective synthesis of mechanically planar chiral [2]

rotaxanes using a chiral leaving group strategy. J. Am. Chem. Soc. 142,

9803–9808 (2020).

Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic

resolution reactions. Adv. Syn. Catal. 343, 5–26 (2001).

List, B. (ed.) Science of Synthesis, Asymmetric Organocatalysis 1, Lewis Base

and Acid Catalysts (Thieme, Stuttgart, New York, 2012).

Lewis, C. A. et al. Remote desymmetrization at near-nanometer group

separation catalyzed by a miniaturized enzyme mimic. J. Am. Chem. Soc. 128,

16454–17455 (2006).

Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A

chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130,

1836–1838 (2008).

Yoshida, K., Shigeta, T., Furuta, T. & Kawabata, T. Catalyst-controlled reversal

of chemoselectivity in acylation of 2-aminopentane-1,5-diol derivatives. Chem.

Commun. 48, 6981–6983 (2012).

Yoshida, K. et al. Non-enzymatic geometry-selective acylation of tri- and

tetrasubstituted α,α’-alkenediols. Adv. Syn. Catal. 354, 3291–3298 (2012).

Yamanaka, M. et al. Origin of high E-selectivity in 4-pyrrolidinopyridinecatalyzed tetrasubstituted α,α’-alkenediol: a computational and experimental

study. J. Org. Chem. 80, 3075–3082 (2015).

Imayoshi, A. et al. Insights into the molecular recognition process in

organocatalytic chemoselective monoacylation of 1,5-pentanediol. Adv. Synth.

Catal. 358, 1337–1344 (2016).

Kawabata, T., Nagato, M., Takasu, K. & Fuji, K. Nonenzymatic kinetic

resolution of racemic alcohols through an “induced fit” process. J. Am. Chem.

Soc. 119, 3169–3170 (1997).

Schedel, H. et al. Asymmetric desymmetrization of meso-diols by C2symmetric chiral 4-pyrrolidinopyridines. Beistein. J. Org. Chem. 8, 1778–1787

(2012).

Tachibana, Y., Kawasaki, H., Kihara, N. & Takata, T. Sequential O- and Nacylation protocol for high-yield preparation and modification of rotaxanes:

31.

32.

33.

34.

35.

36.

37.

ARTICLE

synthesis, functionalization, structure, and intercomponent interaction of

rotaxanes. J. Org. Chem. 71, 5093–5104 (2006).

Kawabata, T., Muramatsu, W., Nishio, T., Shibata, T. & Schedel, H. A catalytic

one-step process for the chemo- and regioselective acylation of

monosaccharides. J. Am. Chem. Soc. 129, 12890–12895 (2007).

Yanagi, M., Imayoshi, A., Ueda, Y., Furuta, T. & Kawabata, T. Carboxylate

anions accelerate pyrrolidinopyridine (ppy)-catalyzed acylation: Catalytic siteselective acylation of a carbohydrate by in situ counteranion exchange. Org.

Lett. 19, 3099–3102 (2017).

Birman, V. B. & Li, X. M. Benzotetramisole: a remarkably enantioselective acyl

transfer catalyst. Org. Lett. 8, 1351–1354 (2006).

Yoshida, K., Furuta, T. & Kawabata, T. Organocatalytic chemoselective

monoacylation of 1,n-linear diols. Angew. Chem. Int. Ed. 50, 4888–4892

(2011).

Hara, K. et al. Influence of novel supramolecular substance, [2]rotaxane, on

the caspase signaling pathway in melanoma and colon cancer cells in vitro. J.

Pharm. Sci. 122, 153–157 (2013).

Fujita, Y. et al. Characterization of the cytotoxic activity of [2]rotaxane (TROA0001), a novel supramolecular compound, in cancer cells. Arch. Pharm. Res.

39, 825–832 (2016).

Barat, R. et al. A mechanically interlocked molecular system programed for

the delivery of an anticancer drug. Chem. Sci. 6, 2608–2613 (2015).

Acknowledgements

This research was financially supported by Grants-in-Aids for Scientific Research (S)

(JP26221301), Young Scientists (B) (JP15K18827), and Scientific Research on Innovative

Areas “Advanced Molecular Transformations by Organocatalysts” (JP23105008) and

“Middle Molecular Strategy” (JP16H01148). A.I. acknowledges the financial support

through JSPS Research Fellowships for Young Scientists (JP15J10954).

Author contributions

T.K. conceived the work; A.I., B.V.L., and T.K. devised the experiments; A.I. carried out

the major part of the experiments; B.V.L., Y.U., and A.M. carried out the experiments;

Y.U., T.Y., and T.F. supported analyses of data; Y.U. performed the computational study;

A.I. and T.K. wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467020-20372-0.

Correspondence and requests for materials should be addressed to T.K.

Peer review information Nature Communications thanks the anonymous reviewer(s) for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | (2021)12:404 | https://doi.org/10.1038/s41467-020-20372-0 | www.nature.com/naturecommunications

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る