リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Halide vapor phase epitaxy of p-type Mg-doped GaN utilizing MgO」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Halide vapor phase epitaxy of p-type Mg-doped GaN utilizing MgO

Ohnishi, Kazuki Amano, Yuki Fujimoto, Naoki Nitta, Shugo Honda, Yoshio Amano, Hiroshi 名古屋大学

2020.06

概要

Halide vapor phase epitaxy of p-type GaN:Mg films was realized by using solid MgO as the Mg source. The Mg concentration was controlled by supplying HCl gas in a MgO source zone. Mg-related photoluminescence peaks were observed at around 3.3 and 2.9 eV. For a sample with a Mg concentration of 2.8 × 10^19 cm^−3, the Hall-effect measurement showed p-type conduction with a hole concentration and a hole mobility of 1.3 × 10^17 cm^−3 and 9.1 cm^2 V^−1 s^−1, respectively, at room temperature. The Mg acceptor level was 232 ± 15 meV, which is in good agreement with the previous report.

この論文で使われている画像

参考文献

1) T. Kachi, Jpn. J. Appl. Phys. 53, 100210 (2014).

2) T. Oka, Jpn. J. Appl. Phys. 58, SB0805 (2019).

3) J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010).

4) D. O. Demochenko, I. C. Diallo, and M. A. Reshchikov, Phys. Rev. Lett. 110, 087404

(2013).

5) J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 89, 035204 (2014).

6) N. Sawada, T. Narita, M. Kanechika, T. Uesugi, T. Kachi, M. Horita, T. Kimoto, and J.

Suda, Appl. Phys. Express 11, 041001 (2018).

7) T. Narita, K. Tomita, Y. Tokuda, T. Kogiso, M. Horita, and T. Kachi, J. Appl. Phys. 124,

215701 (2018).

8) G. Piao, K. Ikenaga, Y. Yano, H. Tokunaga, A. Mishima, Y. Ban, T. Tabuchi, K.

Matsumoto, J. Cryst. Growth 456, 137 (2016).

9) A. Usui, H. Sanakawa, and A. A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997).

10) K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushita, H. Kimura, H. Kasai, K.

Takemoto, K. Umetsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y.

Kumagai, A. Koukitu, and H. Seki, Jpn. J. Appl. Phys. 40, L140 (2001).

11) Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui,

Jpn. J. Appl. Phys. 42, L1 (2003).

12) H. Fujikura, T. Konno, T. Yoshida, and F. Horikiri, Jpn. J. Appl. Phys. 56, 085503 (2017).

13) K. Kanegae, H. Fujikura, Y. Otoki, T. Konnno, T. Yoshida, M. Horita, T. Kimoto, and J.

Suda, Appl. Phys. Lett. 115, 012103 (2019).

14) H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).

15) S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).

16) H. Sakurai, M. Omori, S. Yamada, Y. Furukawa, H. Suzuki, T. Narita, K. Kataoka, M.

Horita, M. Bockowski, J. Suda, and T. Kachi, Appl. Phys. Lett. 115, 142101 (2019).

17) A. Usikov, O. Kovalenkov, V. Soukhoveev, V. Ivantsov, A. Syrkin, V. Dmitriev, A. Yu.

Nikiforov, S. G. Sundaresan, S. J. Jeliazkov, and A. V. Davydov, Phys. Status Solidi C 5,

1829 (2008).

18) S. Takashima, K. Ueno, H. Matsuyama, T. Inamoto, M. Edo, T. Takahashi, M. Shimizu,

and K. Nakagawa, Appl. Phys. Express 10, 121004 (2017).

19) C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Can. Metall. Quart. 23, 309 (1984).

Template for APEX (Jan. 2014)

20) T. Sata, J. Mineral. Soc. Jpn. 16, 137 (1983).

21) I. Gutman, L. Klinger, I. Gotman, and M. Shapiro, Scripta Mater. 45, 363 (2001).

22) G. W. Brindley and R. Hayami, Phil. Mag. 12, 505 (1965).

23) A. Koukitu, S. Hama, T. Taki, and H. Seki, Jpn. J. Appl. Phys. 37, 762 (1998).

24) J. Neugebauer and C. G. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995).

25) H. Obloh, K. H. Bachem, U. Kaufmann, M. Kunzer, M. Meir, A. Ramakrishnan, and P.

Schlotter, J. Cryst. Growth 195, 270 (1998).

26) M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

27) M. A. Reshchikov, D. O. Demchenko, J. D. McNamara, S. Fernández-Garrido, and R.

Calarco, Phys. Rev. B 90, 035207 (2014).

28) C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

29) M. Horita, S. Takashima, R. Tanaka, H. Matsuyama, K. Ueno, M. Edo, T. Takahashi, M.

Shimizu, and J. Suda, Jpn. J. Appl. Phys. 56, 031001 (2017).

30) B. Šantić, Semicond. Sci. Technol. 21, 1484 (2006).

31) G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).

32) P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).

33) W. Götz, R. S. Kern, C. H. Chen, H. Liu, D. A. Steigerwald, and R. M. Fletcher, Mater.

Sci. Eng. B 59, 211 (1999).

34) K. Karch, J.-M. Wagner, and F. Bechstedt, Phys. Rev. B 57, 7043 (1998).

35) T. Narita, K. Tomita, K. Kataoka, Y. Tokuda, T. Kogiso, H. Yoshida, N. Ikarashi, K.

Iwata, M. Nagao, N. Sawada, M. Horita, J. Suda, and T. Kachi, Jpn. J. Appl. Phys. 59,

SA0804 (2020).

36) S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, Appl. Phys.

Lett. 103, 032102 (2013).

Template for APEX (Jan. 2014)

Table I.

Mg concentration

(cm−3)

2.8 × 1019

𝑁𝑁A

(cm−3)

3.4 × 1019

𝑁𝑁D

(cm−3)

3.0 × 1018

𝐸𝐸A0

(meV)

232 ± 15

Template for APEX (Jan. 2014)

Figure Captions

Table 1. Acceptor concentration, donor concentration, and ionization energy

obtained by Hall-effect measurement of p-type GaN with Mg concentration of 2.8

× 1019 cm−3.

Fig. 1. Schematic of the HVPE system for the growth of Mg-doped GaN films

using MgO.

Fig. 2. (a) SIMS depth profile of Mg concentration for Mg-doped GaN films with various

HCl flow rates in the MgO zone and (b) Mg, H, and O concentrations as a function of HCl

flow rate.

Fig. 3. Nomarski-type microscopy images of samples with various Mg concentrations.

Fig. 4. Room-temperature PL spectra of UID-GaN film and Mg-doped GaN films with

various Mg concentrations.

Fig. 5. Temperature dependence of (a) hole concentration and (b) hole mobility of the sample

with Mg concentration of 2.8 × 1019 cm−3.

10

Template for APEX (Jan. 2014)

Source zone

Growth zone

Exhaust

NH3, H2, N2

HCl, N2

MgO

Sub.

HCl, N2

Ga melt

NH3, H2, N2

Fig. 1.

11

Holder

Template for APEX (Jan. 2014)

(a)

(b)

Fig. 2.

12

Template for APEX (Jan. 2014)

Mg concentration

(cm−3)

1.5 × 1019

4.4 × 1019

Nomarski-type

microscopy image

100 µm

Fig. 3.

13

6.8 × 1019

9.0 × 1019

Template for APEX (Jan. 2014)

Fig.4.

14

Template for APEX (Jan. 2014)

(a)

(b)

Fig. 5.

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る