リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高血圧自然発症ラットおよび血管内皮細胞におけるヘスペリジンの高血圧予防機構に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高血圧自然発症ラットおよび血管内皮細胞におけるヘスペリジンの高血圧予防機構に関する研究

高, 観禎 GAO, GUANZHEN コウ, カンテイ 九州大学

2022.09.22

概要

Hypertension, the most prevalent chronic medical disorder, is a major worldwide public-health challenge and the leading contributor to mortality and disability-adjusted life years lost. Nowadays, medications targeting the renin-angiotensin system (RAS) are used to treat hypertension, but their long-term side effects, such as headaches, dizziness, constipation, coughing, and angioneurotic edema, should be noted. In this regard, diet and lifestyle changes are the first-line strategy for hypertension management. A high intake of plant-derived foods containing high naturally occurring polyphenols., e.g., hesperidin, a citrus peel flavanone, has been proved to be beneficial for modulating high blood pressure. Previous human studies revealed that daily consumption of hesperidin-containing Mikan tea significantly reduced the elevated systolic blood pressure (SBP) in mildly hypertensive volunteers. However, the underlying anti-hypertensive mechanism(s) through, e.g., the suppression of renin, angiotensin I-converting enzyme (ACE) and angiotensin II receptors (AT1/2 R), or activation of ACE2/angiotensin (1-7)/Mas receptor (MasR) axis, remains unclear. The present study, thus, aimed to get insights into the anti-hypertensive effect and mechanism of hesperidin by focusing on the RAS regulation, using spontaneously hypertensive rats (SHRs) and human umbilical vein endothelial cells (HUVECs).

Firstly, a long-term (20 weeks) administration study of hesperidin (50 mg/kg/day) and hesperidin-containing Mikan tea (50 mg/kg/day) was performed in 8-week-old SHRs. At the end of the protocol, hesperidin and Mikan tea groups showed a significant (P < 0.05) SBP reduction of approximately 60 mmHg in SHRs. No changes in the heart rate and parameters related to the circulating and local RAS activity, such as ACE activity and angiotensin metabolites, were observed between groups. In contrast, hesperidin ameliorated the impaired vasomotor response in vessels of 28-week-old SHRs and was found to exert a significant upregulation of MasR expression in the aorta, but not angiotensin II type 1/2 receptor (AT1/2R) expression. An increase in cyclic adenosine monophosphate (cAMP) level was obtained in the aorta of hesperidin-administered SHRs, indicating that the anti-hypertensive effect of hesperidin may be involved in the upregulation of MasR axis.

Then, the mechanism of hesperidin-elevated aortic MasR expression in SHRs was investigated, using HUVECs. HUVECs were cultured with 1 µM hesperidin for 2 h, following the measurements of nitric oxide (NO) production in the cell culture medium and vasomotor-related receptors’ expression in cells. Hesperidin treatment promoted NO production and only caused a significant increase in MasR expression among the vasomotor-related receptors of AT1/2R, estrogen receptor (ER), and bradykinin B2 receptor (BK2R), while a MasR antagonist did not alter the hesperidin-induced NO production and MasR expression. This indicates that hesperidin was not an agonist for MasR. By inhibitor-aided experiments a transient receptor potential vanilloid 1 (TRPV1) inhibition caused a significant reduction of MasR expression and NO production by hesperidin, suggesting that hesperidin may play a role in HUVECs by playing TRPV1 agonist. The agonistic effect of hesperidin was confirmed by increasing intracellular Ca2+ level and TRPV1-knocked down HUVECs. The results that the inhibitions of Ca2+/calmodulin-dependent kinase II (CaMKII) and p38 mitogen-activated protein kinase (p38 MAPK) caused an abolishment of MasR elevated by hesperidin indicate that hesperidin was in the axis of TRPV1/CaMKII-mediated p38 MAPK/MasR expression. Phosphorylation of endothelial NO synthase (eNOS) by hesperidin and reduced NO production by eNOS inhibitor revealed that hesperidin was alternatively involved in the activation of TRPV1/CaMKII-mediated eNOS/NO production pathway. The structure-activity relationship analysis of flavonoids demonstrated that the B ring of the twisted flavonoid skeleton with a hydroxy group at the 3’ position was a crucial factor for agonistic TRPV1 binding of hesperidin.

In conclusion, the present study demonstrates for the first time that hesperidin exerted an antihypertensive effect via the activation of aortic MasR/NO axes through the agonistic TRPV1 binding in aortic endothelium.

参考文献

[1] Naish, J.; Court, D. S. Medical Sciences, Second.; Elsevier Health Sciences, 2014.

[2] Whelton, P. K.; Carey, R. M.; Aronow, W. S.; Casey, D. E.; Collins, K. J.; Himmelfarb, C. D.; DePalma, S. M.; Gidding, S.; Jamerson, K. A.; Jones, D. W.; MacLaughlin, E. J.; Muntner, P.; Ovbiagele, B.; Smith, S. C.; Spencer, C. C.; Stafford, R. S.; Taler, S. J.; Thomas, R. J.; Williams, K. A.; Williamson, J. D.; Wright, J. T.; Levine, G. N.; O’Gara, P. T.; Halperin, J. L.; Past, I.; Al, S. M.; Beckman, J. A.; Birtcher, K. K.; Bozkurt, B.; Brindis, R. G.; Cigarroa, J. E.; Curtis, L. H.; Deswal, A.; Fleisher, L. A.; Gentile, F.; Goldberger, Z. D.; Hlatky, M. A.; Ikonomidis, J.; Joglar, J. A.; Mauri, L.; Pressler, S. J.; Riegel, B.; Wijeysundera, D. N.; Walsh, M. N.; Jacobovitz, S.; Oetgen, W. J.; Elma, M. A.; Scholtz, A.; Sheehan, K. A.; Abdullah, A. R.; Tahir, N.; Warner, J. J.; Brown, N.; Robertson, R. M.; Whitman, G. R.; Hundley, J. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. Hypertension 2018, 71 (6), E13–E115.

[3] Kearney, P. M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P. K.; He, J. Global Burden of Hypertension: Analysis of Worldwide Data. Lancet 2005, 365 (9455), 217–223.

[4] Mills, K. T.; Bundy, J. D.; Kelly, T. N.; Reed, J.; Kearney, P.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies from 90 Countries. Circulation 2016, 134 (6), 441–450.

[5] A global brief on hypertension : silent killer, global public health crisis: World Health Day 2013 https://www.who.int/publications/i/item/aglobal-brief-on-hypertension-silent-killer-global-public-health-crisisworld-health-day-2013 (accessed 2013 -06 -25).

[6] Fuchs, F. D.; Whelton, P. K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75 (2), 285–292.

[7] Mills, K. T.; Stefanescu, A.; He, J. The Global Epidemiology of Hypertension. Nat. Rev. Nephrol. 2020, 16 (4), 223–237.

[8] Appel, L. J.; Brands, M. W.; Daniels, S. R.; Karanja, N.; Elmer, P. J.; Sacks, F. M. Dietary Approaches to Prevent and Treat Hypertension: A Scientific Statement from the American Heart Association. Hypertension 2006, 47 (2), 296–308.

[9] Forman, J. P.; Stampfer, M. J.; Curhan, G. C. Diet and Lifestyle Risk Factors Associated with Incident Hypertension in Women. JAMA 2009, 302 (4), 401–411.

[10] Ozemek, C.; Laddu, D. R.; Arena, R.; Lavie, C. J. The Role of Diet for Prevention and Management of Hypertension. Curr. Opin. Cardiol. 2018, 33 (4), 388–393.

[11] Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L. Influence of Dietary Approaches to Stop Hypertension (DASH) Diet on Blood Pressure: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24 (12), 1253– 1261.

[12] Gibbs, J.; Gaskin, E.; Ji, C.; Miller, M. A.; Cappuccio, F. P. The Effect of Plant-Based Dietary Patterns on Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Intervention Trials. J. Hypertens. 2021, 39 (1), 23–37.

[13] Scalbert, A.; Johnson, I. T.; Saltmarsh, M. Polyphenols: Antioxidants and Beyond. Am. J. Clin. Nutr. 2005, 81 (1), 215S-217S.

[14] Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2 (5), 270– 278.

[15] Maaliki, D.; Shaito, A. A.; Pintus, G.; El-Yazbi, A.; Eid, A. H. Flavonoids in Hypertension: A Brief Review of the Underlying Mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65.

[16] Li, A. N.; Li, S.; Zhang, Y. J.; Xu, X. R.; Chen, Y. M.; Li, H. Bin. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6 (12), 6020–6047.

[17] Grosso, G.; Godos, J.; Currenti, W.; Micek, A.; Falzone, L.; Libra, M.; Giampieri, F.; Forbes-Hernández, T. Y.; Quiles, J. L.; Battino, M.; La Vignera, S.; Galvano, F. The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action. Nutrients 2022, 14 (3), 545.

[18] Luo, D.; Xu, J.; Chen, X.; Zhu, X.; Liu, S.; Li, J.; Xu, X.; Ma, X.; Zhao, J.; Ji, X. (−)-Epigallocatechin-3-Gallate (EGCG) Attenuates Salt-Induced Hypertension and Renal Injury in Dahl Salt-Sensitive Rats. Sci. Rep. 2020, 10, 4783.

[19] Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does Quercetin Improve Cardiovascular Risk Factors and Inflammatory Biomarkers in Women with Type 2 Diabetes: A Double-Blind Randomized Controlled Clinical Trial. Int. J. Prev. Med. 2013, 4 (7), 777– 785.

[20] Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kürbitz, C.; Settler, U.; PlachtaDanielzik, S.; Wagner, A. E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Müller, M. J. Quercetin Reduces Systolic Blood Pressure and Plasma Oxidised Low-Density Lipoprotein Concentrations in Overweight Subjects with a High-Cardiovascular Disease Risk Phenotype: A Double-Blinded, Placebo-Controlled Cross-over Study. Br. J. Nutr. 2009, 102 (7), 1065–1074.

[21] Reshef, N.; Hayari, Y.; Goren, C.; Boaz, M.; Madar, Z.; Knobler, H. Antihypertensive Effect of Sweetie Fruit in Patients with Stage I Hypertension. Am. J. Hypertens. 2005, 18 (10), 1360–1363.

[22] Sharma, M.; Akhtar, N.; Sambhav, K.; Shete, G.; Bansal, A.; Sharma, S. Emerging Potential of Citrus Flavanones as an Antioxidant in Diabetes and Its Complications. Curr. Top. Med. Chem. 2014, 15 (2), 187–195.

[23] Manthey, J. A.; Grohmann, K. Flavonoids of the Orange Subfamily Aurantioideae. Adv. Exp. Med. Biol. 1998, 439, 85–101.

[24] Nielsen, I. L. F.; Chee, W. S. S.; Poulsen, L.; Offord-cavin, E.; Rasmussen, S. E.; Frederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M.; Williamson, G. Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions Bioavailability Is Improved by Enzymatic Modification of the Citrus. J. Nutr. 2006, 136 (2), 404–408.

[25] Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid Intake and Risk of Chronic Diseases. Am. J. Clin. Nutr. 2002, 76 (3), 560–568.

[26] Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phyther. Res. 2015, 29 (3), 323– 331.

[27] Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J. A.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M. J. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells While Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2011, 96 (5), 782–792.

[28] Ohtsuki, K.; Abe, A.; Mitsuzumi, H.; Kondo, M.; Uemura, K.; Iwasaki, Y.; Kondo, Y. Effects of Long-Term Administration of Hesperidin and Glucosyl Hesperidin to Spontaneously Hypertensive Rats. J. Nutr. Sci. Vitaminol. (Tokyo). 2002, 48 (5), 420–422.

[29] Yamamoto, M.; Suzuki, A.; Hase, T. Short-Term Effects of Glucosyl Hesperidin and Hesperetin on Blood Pressure and Vascular Endothelial Function in Spontaneously Hypertensive Rats. J. Nutr. Sci. Vitaminol. 2008, 54 (1), 95–98.

[30] Wunpathe, C.; Potue, P.; Maneesai, P.; Bunbupha, S.; Prachaney, P.; Kukongviriyapan, U.; Kukongviriyapan, V.; Pakdeechote, P. Hesperidin Suppresses Renin-Angiotensin System Mediated NOX2 over-Expression and Sympathoexcitation in 2K-1C Hypertensive Rats. Am. J. Chin. Med. 2018, 46 (4), 751–767.

[31] Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J. F.; Scalbert, A.; Mazur, A. Hesperidin Contributes to the Vascular Protective Effects of Orange Juice: A Randomized Crossover Study in Healthy Volunteers. Am. J. Clin. Nutr. 2011, 93 (1), 73–80.

[32] Tanaka, K.; Yamamoto, S.; Omagari, K.; Yuasa, M.; Tsuchihashi, A.; Miyata, Y.; Yoshino, Y.; Ono, H.; Matsui, T.; Yamamura, H. Effects of Feeding Hesperidin Derived from Fermented Tea Leaves Made by Tea‒ rolling Processing of Thinned Satsuma Mandarin Fruit and Green Tea Leaves on Blood Pressure. Japanese Pharmacol. Ther. 2020, 48 (2), 225– 235.

[33] Miyata, Y.; Tanaka, T.; Matsui, T.; Omagari, K.; Yuasa, M.; Yamamoto, S.; Tanaka, K. Effects of Fermented Tea Made by Tea-Rolling Processing of Thinned Fruit of Satsuma Mandarin and Third Crop Green Tea Leaves on the Flexibility of Arterial Blood Vessel. Japanese Pharmacol. Ther. 2021, 49 (1), 63–69.

[34] Dhanya, R.; Jayamurthy, P. In Vitro Evaluation of Antidiabetic Potential of Hesperidin and Its Aglycone Hesperetin under Oxidative Stress in Skeletal Muscle Cell Line. Cell Biochem. Funct. 2020, 38 (4), 419–427.

[35] Peng, P.; Jin, J.; Zou, G.; Sui, Y.; Han, Y.; Zhao, D.; Liu, L. Hesperidin Prevents Hyperglycemia in Diabetic Rats by Activating the Insulin Receptor Pathway. Exp. Ther. Med. 2020, 21 (1), 53.

[36] Hanchang, W.; Khamchan, A.; Wongmanee, N.; Seedadee, C. Hesperidin Ameliorates Pancreatic β-Cell Dysfunction and Apoptosis in Streptozotocin-Induced Diabetic Rat Model. Life Sci. 2019, 235, 116858.

[37] Banjerdpongchai, R.; Wudtiwai, B.; Khaw-on, P.; Rachakhom, W.; Duangnil, N.; Kongtawelert, P. Hesperidin from Citrus Seed Induces Human Hepatocellular Carcinoma HepG2 Cell Apoptosis via Both Mitochondrial and Death Receptor Pathways. Tumor Biol. 2016, 37 (1), 227–237.

[38] Birsu Cincin, Z.; Unlu, M.; Kiran, B.; Sinem Bireller, E.; Baran, Y.; Cakmakoglu, B. Anti-Proliferative, Apoptotic and Signal Transduction Effects of Hesperidin in Non-Small Cell Lung Cancer Cells. Cell. Oncol. 2015, 38 (3), 195–204.

[39] Mahmoud, A. M.; Mohammed, H. M.; Khadrawy, S. M.; Galaly, S. R. Hesperidin Protects against Chemically Induced Hepatocarcinogenesis via Modulation of Nrf2/ARE/HO-1, PPARγ and TGF-Β1/Smad3 Signaling, and Amelioration of Oxidative Stress and Inflammation. Chem. Biol. Interact. 2017, 277, 146–158.

[40] Zaghloul, R. A.; Elsherbiny, N. M.; Kenawy, H. I.; El-Karef, A.; Eissa, L. A.; El-Shishtawy, M. M. Hepatoprotective Effect of Hesperidin in Hepatocellular Carcinoma: Involvement of Wnt Signaling Pathways. Life Sci. 2017, 185, 114–125.

[41] Li, J.; Liu, Y.; Wang, L.; Gu, Z.; Huan, Z.; Fu, H.; Liu, Q. Hesperetin Protects SH-SY5Y Cells against 6-Hydroxydopamine-Induced Neurotoxicity via Activation of Nrf2/ARE Signaling Pathways. Trop. J. Pharm. Res. 2020, 19 (6), 1197–1201.

[42] Jahanshahi, M.; Elyasi, L.; Ghazvini, H.; Nikmahzar, E.; Taziki, S. Investigation of the Antioxidant Activity of Hesperidin against 6- Hydroxydopamine-Induced Cell Damage in SH-SY5Y Cells. Natl. J. Physiol. Pharm. Pharmacol. 2018, 8 (6), 834–839.

[43] Antunes, M. S.; Goes, A. T. R.; Boeira, S. P.; Prigol, M.; Jesse, C. R. Protective Effect of Hesperidin in a Model of Parkinson’s Disease Induced by 6-Hydroxydopamine in Aged Mice. Nutrition 2014, 30 (11–12), 1415– 1422.

[44] Li, C.; Zug, C.; Qu, H.; Schluesener, H.; Zhang, Z. Hesperidin Ameliorates Behavioral Impairments and Neuropathology of Transgenic APP/PS1 Mice. Behav. Brain Res. 2015, 281, 32–42.

[45] Wilmsen, P. K.; Spada, D. S.; Salvador, M. Antioxidant Activity of the Flavonoid Hesperidin in Chemical and Biological Systems. J. Agric. Food Chem. 2005, 53 (12), 4757–4761.

[46] Kalpana, K. B.; Srinivasan, M.; Menon, V. P. Evaluation of Antioxidant Activity of Hesperidin and Its Protective Effect on H2O2 Induced Oxidative Damage on PBR322 DNA and RBC Cellular Membrane. Mol. Cell. Biochem. 2009, 323 (1–2), 21–29.

[47] Elavarasan, J.; Velusamy, P.; Ganesan, T.; Ramakrishnan, S. K.; Rajasekaran, D.; Periandavan, K. Hesperidin-Mediated Expression of Nrf2 and Upregulation of Antioxidant Status in Senescent Rat Heart. J. Pharm. Pharmacol. 2012, 64 (10), 1472–1482.

[48] Sakata, K.; Hirose, Y.; Qiao, Z.; Tanaka, T.; Mori, H. Inhibition of Inducible Isoforms of Cyclooxygenase and Nitric Oxide Synthase by Flavonoid Hesperidin in Mouse Macrophage Cell Line. Cancer Lett. 2003, 199 (2), 139–145.

[49] Jeon, H. J.; Seo, M. J.; Choi, H. S.; Lee, O. H.; Lee, B. Y. Gelidium Elegans, an Edible Red Seaweed, and Hesperidin Inhibit Lipid Accumulation and Production of Reactive Oxygen Species and Reactive Nitrogen Species in 3T3-L1 and RAW264.7 Cells. Phyther. Res. 2014, 28 (11), 1701–1709.

[50] Choi, I. Y.; Kim, S. J.; Jeong, H. J.; Park, S. H.; Song, Y. S.; Lee, J. H.; Kang, T. H.; Park, J. H.; Hwang, G. S.; Lee, E. J.; Hong, S. H.; Kim, H. M.; Um, J. Y. Hesperidin Inhibits Expression of Hypoxia Inducible Factor1 Alpha and Inflammatory Cytokine Production from Mast Cells. Mol. Cell. Biochem. 2007, 305 (1–2), 153–161.

[51] Lee, Y. C.; Kim, S. H.; Kim, B. K. Antiasthmatic Effects of Hesperidin, a Potential Th2 Cytokine Antagonist, in a Mouse Model of Allergic Asthma. Mediators Inflamm. 2011, 2011, 485402.

[52] Wei, D.; Ci, X.; Chu, X.; Wei, M.; Hua, S.; Deng, X. Hesperidin Suppresses Ovalbumin-Induced Airway Inflammation in a Mouse Allergic Asthma Model. Inflammation 2012, 35 (1), 114–121.

[53] Garg, A.; Garg, S.; Zaneveld, L. J. D.; Singla, A. K. Chemistry and Pharmacology of the Citrus Bioflavonoid Hesperidin. Phyther. Res. 2001, 15, 655–669.

[54] Ikemura, M.; Sasaki, Y.; Giddings, J. C.; Yamamoto, J. Preventive Effects of Hesperidin, Glucosyl Hesperidin and Naringin on Hypertension and Cerebral Thrombosis in Stroke-Prone Spontaneously Hypertensive Rats. Phyther. Res. 2012, 26 (9), 1272–1277.

[55] Nectoux, A. M.; Abe, C.; Huang, S. W.; Ohno, N.; Tabata, J.; Miyata, Y.; Tanaka, K.; Tanaka, T.; Yamamura, H.; Matsui, T. Absorption and Metabolic Behavior of Hesperidin (Rutinosylated Hesperetin) after Single Oral Administration to Sprague-Dawley Rats. J. Agric. Food Chem. 2019, 67 (35), 9812–9819.

[56] Li, Y. M.; Li, X. M.; Li, G. M.; Du, W. C.; Zhang, J.; Li, W. X.; Xu, J.; Hu, M.; Zhu, Z. In Vivo Pharmacokinetics of Hesperidin Are Affected by Treatment with Glucosidase-like BglA Protein Isolated from Yeasts. J. Agric. Food Chem. 2008, 56 (14), 5550–5557.

[57] Nakayama, H.; Tanaka, T.; Miyata, Y.; Saito, Y.; Matsui, T.; Aramaki, S.; Nagata, Y.; Tamaru, S.; Tanaka, K. Development of Soluble HesperidinContaining Fermented Tea Made from Unripe Mandarin Orange Fruits and Third Crop Green Tea Leaves. Nippon Eiyo Shokuryo Gakkaishi 2014, 67 (2), 95–103.

[58] 田端淳二; 郭建; 梅田結花; 宮田裕次; 田中一成; 田中隆; 松井利 郎. ミカン混合発酵茶中ヘスペリジンのラット体内における吸収・ 代謝挙動の解明. In 第34回九州分析化学会若手の会夏季セミナー; 2016.

[59] Cao, R.; Kobayashi, Y.; Nonaka, A.; Miyata, Y.; Tanaka, K.; Tanaka, T.; Matsui, T. NMR Spectroscopic and Quantum Mechanical Analyses of Enhanced Solubilization of Hesperidin by Theasinensin A. Pharm. Res. 2015, 32 (7), 2301–2309.

[60] Cao, R.; Yang, X.; Strappe, P.; Blanchard, C.; Zhou, Z. Natural Products Derived from Tea on the Solubility of Hesperidin by LC-TOF/MS and NMR. Int. J. Food Prop. 2017, 20 (S1), 270–278.

[61] Magder, S. The Meaning of Blood Pressure. Crit. care 2018, 22, 257.

[62] Kähönen, E.; Lyytikäinen, L. P.; Aatola, H.; Koivistoinen, T.; Haarala, A.; Sipilä, K.; Juonala, M.; Lehtimäki, T.; Raitakari, O. T.; Kähönen, M.; Hutri-Kähönen, N. Systemic Vascular Resistance Predicts the Development of Hypertension: The Cardiovascular Risk in Young Finns Study. Blood Press. 2020, 29 (6), 362–369.

[63] Wu, C. H.; Mohammadmoradi, S.; Chen, J. Z.; Sawada, H.; Daugherty, A.; Lu, H. S. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler. Thromb. Vasc. Biol. 2018, 38 (7), E108–E116.

[64] Yim, H. E.; Yoo, K. H. Renin-Angiotensin System - Considerations for Hypertension and Kidney. Electrolyte Blood Press. 2008, 6 (1), 42–50.

[65] Kumar, R.; Kumar, A.; Sharma, R.; Baruwa, A. Pharmacological Review on Natural ACE Inhibitors. Der Pharm. Lett. 2010, 2 (2), 66–93.

[66] Takimoto-Ohnishi, E.; Murakami, K. Renin–Angiotensin System Research: From Molecules to the Whole Body. J. Physiol. Sci. 2019, 69 (4), 581–587.

[67] Ng Chee Ping. Oral Direct Renin Inhibition: Premise, Promise, and Potential Limitations of a New Class of Antihypertensive Drug. Am. J. Med. 2008, 121 (4), 265–271.

[68] Ramya, K.; Suresh, R.; Kumar, H. Y.; Kumar, B. R. P.; Murthy, N. B. S. Decades-Old Renin Inhibitors Are Still Struggling to Find a Niche in Antihypertensive Therapy. A Fleeting Look at the Old and the Promising New Molecules. Bioorganic Med. Chem. 2020, 28 (10), 115466.

[69] Pihlanto, A.; Mäkinen, S. The Function of Renin and the Role of FoodDerived Peptides as Direct Renin Inhibitors; Tolekova, A. N., Ed.; IntechOpen: London, 2017.

[70] Aluko, R. E. Food Protein-Derived Renin-Inhibitory Peptides: In Vitro and in Vivo Properties. J. Food Biochem. 2019, 43 (1), e12648.

[71] Takahashi, S.; Gotoh, T.; Hata, K.; Tokiwano, T.; Yoshizawa, Y.; Hiwatashi, K.; Ogasawara, H.; Hori, K. Renin Inhibitors in Foodstuffs: Structure-Function Relationship. J. Biol. Macromol. 2014, 14 (2), 71–84.

[72] Fengjuan, L.; Takahashi, Y.; Yamaki, K. Inhibitory Effect of CatechinRelated Compounds on Renin Activity. Biomed. Res. 2013, 34 (3), 167– 171.

[73] Deng, Y. F.; Aluko, R. E.; Jin, Q.; Zhang, Y.; Yuan, L. J. Inhibitory Activities of Baicalin against Renin and Angiotensin-Converting Enzyme. Pharm. Biol. 2012, 50 (4), 401–406.

[74] Hiwatashi, K.; Shirakawa, H.; Hori, K.; Yoshiki, Y.; Suzuki, N.; Hokari, M.; Komai, M.; Takahashi, S. Reduction of Blood Pressure by Soybean Saponins, Renin Inhibitors from Soybean, in Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2010, 74 (11), 2310–2312.

[75] Moon, J. Y. Recent Update of Renin-Angiotensin-Aldosterone System in the Pathogenesis of Hypertension. Electrolyte Blood Press. 2013, 11 (2), 41–45.

[76] Farzamirad, V.; Aluko, R. E. Angiotensin-Converting Enzyme Inhibition and Free-Radical Scavenging Properties of Cationic Peptides Derived from Soybean Protein Hydrolysates. Int. J. Food Sci. Nutr. 2008, 59 (5), 428–437.

[77] Hong, F.; Ming, L.; Yi, S.; Zhanxia, L.; Yongquan, W.; Chi, L. The Antihypertensive Effect of Peptides: A Novel Alternative to Drugs? Peptides 2008, 29 (6), 1062–1071.

[78] Vercruysse, L.; Van Camp, J.; Smagghe, G. ACE Inhibitory Peptides Derived from Enzymatic Hydrolysates of Animal Muscle Protein: A Review. J. Agric. Food Chem. 2005, 53 (21), 8106–8115.

[79] Gasparotto, A.; Gasparotto, F. M.; Lourenço, E. L. B.; Crestani, S.; Stefanello, M. E. A.; Salvador, M. J.; Da Silva-Santos, J. E.; Marques, M. C. A.; Kassuya, C. A. L. Antihypertensive Effects of Isoquercitrin and Extracts from Tropaeolum Majus L.: Evidence for the Inhibition of Angiotensin Converting Enzyme. J. Ethnopharmacol. 2011, 134 (2), 363– 372.

[80] Häckl, L. P. N.; Cuttle, G.; Sanches Dovichi, S.; Lima-Landman, M. T.; Nicolau, M. Inhibition of Angiotensin-Converting Enzyme by Quercetin Alters the Vascular Response to Bradykinin and Angiotensin I. Pharmacology 2002, 65 (4), 182–186.

[81] Olszanecki, R.; Bujak-Gizycka, B.; Madej, J.; Suski, M.; Wołkow, P. P.; Jawień, J.; Korbut, R. Kaempferol, but Not Resveratrol Inhibits Angiotensin Converting Enzyme. J. Physiol. Pharmacol. 2008, 59 (2), 387–392.

[82] Guerrero, L.; Castillo, J.; Quiñones, M.; Garcia-Vallvé, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS One 2012, 7 (11), 1–11.

[83] Schmieder, R. E. Mechanisms for the Clinical Benefits of Angiotensin II Receptor Blockers. Am. J. Hypertens. 2005, 18 (5), 720–730.

[84] Khairnar, A. K.; Baviskar, D. T.; Jain, D. K. Angiotensin II Receptor Blockers: An Overview. Int. J. Pharm. Pharm. Sci. 2012, 4 (3), 50–56.

[85] Fernández-Musoles, R.; Castelló-Ruiz, M.; Arce, C.; Manzanares, P.; Ivorra, M. D.; Salom, J. B. Antihypertensive Mechanism of LactoferrinDerived Peptides: Angiotensin Receptor Blocking Effect. J. Agric. Food Chem. 2014, 62 (1), 173–181.

[86] Laskar, M. A.; Choudhury, M. D. In Silico Screening of Some Plant Based Natural Products as Angiotensin Receptor Blockers Against Cardiovascular Diseases. World J. Pharm. Pharm. Sci. 2015, 4 (1), 1248– 1257.

[87] Lukiati, B.; Sulisetijono; Setiowati, F. K.; Klaritasari, A. Potential Prediction of Phenolic Compounds in Red Ginger (Zingiber Officinale Var. Rubrum) as an AT1R Antagonist by Bioinformatics Approach for Antihypertensive Oral Drug Candidates. In AIP Conference Proceedings; 2021; Vol. 2353, p030084.

[88] Povlsen, A.; Grimm, D.; Wehland, M.; Infanger, M.; Krüger, M. The Vasoactive Mas Receptor in Essential Hypertension. J. Clin. Med. 2020, 9 (1), 267–278.

[89] Rieg, A. D.; Rossaint, R.; Verjans, E.; Maihöfer, N. A.; Uhlig, S.; Martin, C. Levosimendan Relaxes Pulmonary Arteries and Veins in Precision-Cut Lung Slices - The Role of KATP-Channels, cAMP and cGMP. PLoS One 2013, 8 (6), e66195.

[90] Ferreira, A. J.; Murça, T. M.; Fraga-Silva, R. A.; Castro, C. H.; Raizada, M. K.; Santos, R. A. S. New Cardiovascular and Pulmonary Therapeutic Strategies Based on the Angiotensin-Converting Enzyme 2/Angiotensin- (1-7)/Mas Receptor Axis. Int. J. Hypertens. 2012, 2012, 147825.

[91] Sharma, R. K.; Stevens, B. R.; Obukhov, A. G.; Grant, M. B.; Oudit, G. Y.; Li, Q.; Richards, E. M.; Pepine, C. J.; Raizada, M. K. ACE2 (Angiotensin-Converting Enzyme 2) in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2. Hypertension 2020, 76, 651–661.

[92] Liao, W.; Bhullar, K. S.; Chakrabarti, S.; Davidge, S. T.; Wu, J. Egg White-Derived Tripeptide IRW (Ile-Arg-Trp) Is an Activator of Angiotensin Converting Enzyme 2. J. Agric. Food Chem. 2018, 66 (43), 11330–11336.

[93] He, R.; Yang, Y.; Wang, Z.; Xing, C.; Yuan, J.; Wang, L.; Udenigwe, C.; Ju, X. Rapeseed Protein-Derived Peptides, LY, RALP, and GHS, Modulates Key Enzymes and Intermediate Products of Renin–Angiotensin System Pathway in Spontaneously Hypertensive Rat. npj Sci. Food 2019, 3 (1), 1–6.

[94] Kim, E. N.; Kim, M. Y.; Lim, J. H.; Kim, Y.; Shin, S. J.; Park, C. W.; Kim, Y. S.; Chang, Y. S.; Yoon, H. E.; Choi, B. S. The Protective Effect of Resveratrol on Vascular Aging by Modulation of the Renin–Angiotensin System. Atherosclerosis 2018, 270, 123–131.

[95] Storozhuk, M. V.; Moroz, O. F.; Zholos, A. V. Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. Biomed Res. Int. 2019, 2019, 5806321.

[96] Randhawa, P. K.; Jaggi, A. S. TRPV1 Channels in Cardiovascular System: A Double Edged Sword? Int. J. Cardiol. 2017, 228, 103–113.

[97] Guo, B.; Wei, J.; Su, K.; Chiang, A.; Zhao, J.; Chen, H.; Shyue, S.; Lee, T. Transient Receptor Potential Vanilloid Type 1 Is Vital for (-)- Epigallocatechin-3-Gallate Mediated Activation of Endothelial Nitric Oxide Synthase. Mol. Nutr. Food Res. 2015, 59 (4), 646–657.

[98] Pham, T. H.; Jin, S. W.; Lee, G. H.; Park, J. S.; Kim, J. Y.; Thai, T. N.; Han, E. H.; Jeong, H. G. Sesamin Induces Endothelial Nitric Oxide Synthase Activation via Transient Receptor Potential Vanilloid Type 1. J. Agric. Food Chem. 2020, 68 (11), 3474–3484.

[99] Yamamoto, M.; Suzuki, A.; Jokura, H.; Yamamoto, N.; Hase, T. Glucosyl Hesperidin Prevents Endothelial Dysfunction and Oxidative Stress in Spontaneously Hypertensive Rats. Nutrition 2008, 24 (5), 470–476.

[100] Cao, R.; Kobayashi, Y.; Nonaka, A.; Miyata, Y.; Tanaka, K.; Tanaka, T.; Matsui, T. NMR Spectroscopic and Quantum Mechanical Analyses of Enhanced Solubilization of Hesperidin by Theasinensin A. Pharm. Res. 2015, 32 (7), 2301–2309.

[101] Yamamoto, M.; Jokura, H.; Suzuki, A.; Hase, T.; Shimotoyodome, A. Effects of Continuous Ingestion of Hesperidin and Glucosyl Hesperidin on Vascular Gene Expression in Spontaneously Hypertensive Rats. J. Nutr. Sci. Vitaminol. (Tokyo). 2013, 59 (5), 470–473.

[102] Nakayama, H.; Yuito, N.; Miyata, Y.; Tamaya, K.; Tanaka, T.; Saito, Y.; Matsui, T.; Aramaki, S.; Nagata, Y.; Tamaru, S.; Tanaka, K. Hypolipidemic Property of a New Fermented Tea Made with Third Crop Green Tea (Camellia Sinensis) Leaves and Unripe Satsuma Mandarin (Citrus Unshiu) Fruits. Food Sci. Technol. Res. 2015, 21 (1), 77–86.

[103] Mohammed-Ali, Z.; Carlisle, R. E.; Nademi, S.; Dickhout, J. G. Chapter 16 - Animal Models of Kidney Disease. In Animal Models for the Study of Human Disease; Michael, C. P., Ed.; Academic Press, 2017; pp 379–417.

[104] Fukuda, T.; Kuroda, T.; Kono, M.; Miyamoto, T.; Tanaka, M.; Matsui, T. Attenuation of L-Type Ca2+ Channel Expression and Vasomotor Response in the Aorta with Age in Both Wistar-Kyoto and Spontaneously Hypertensive Rats. PLoS One 2014, 9 (2), 1–9.

[105] Tanaka, M.; Kiyohara, H.; Yoshino, A.; Nakano, A.; Takata, F.; Dohgu, S.; Kataoka, Y.; Matsui, T. Brain-Transportable Soy Dipeptide, Tyr-Pro, Attenuates Amyloid β Peptide25-35-Induced Memory Impairment in Mice. npj Sci. Food 2020, 4 (1), 2–5.

[106] Hayakawa, K.; Kimura, M.; Kamata, K. Mechanism Underlying γAminobutyric Acid-Induced Antihypertensive Effect in Spontaneously Hypertensive Rats. Eur. J. Pharmacol. 2002, 438 (1–2), 107–113.

[107] Potenza, M. A.; Marasciulo, F. L.; Tarquinio, M.; Tiravanti, E.; Colantuono, G.; Federici, A.; Kim, J. A.; Quon, M. J.; Montagnani, M. EGCG, a Green Tea Polyphenol, Improves Endothelial Function and Insulin Sensitivity, Reduces Blood Pressure, and Protects against Myocardial I/R Injury in SHR. Am. J. Physiol. - Endocrinol. Metab. 2007, 292 (5), 1378–1387.

[108] Chen, W. J.; Cheng, Y.; Li, W.; Dong, X. K.; Wei, J. L.; Yang, C. H.; Jiang, Y. H. Quercetin Attenuates Cardiac Hypertrophy by Inhibiting Mitochondrial Dysfunction Through SIRT3/PARP-1 Pathway. Front. Pharmacol. 2021, 12, 739615.

[109] Galleano, M.; Bernatova, I.; Puzserova, A.; Balis, P.; Sestakova, N.; Pechanova, O.; Fraga, C. G. Epicatechin Reduces Blood Pressure and Improves Vasorelaxation in Spontaneously Hypertensive Rats by NOMediated Mechanism. IUBMB Life 2013, 65 (8), 710–715.

[110] Yang, T.; Xu, C. Physiology and Pathophysiology of the Intrarenal ReninAngiotensin System: An Update. J. Am. Soc. Nephrol. 2017, 28 (4), 1040– 1049.

[111] Michael, S. K.; Surks, H. K.; Wang, Y.; Zhu, Y.; Blanton, R.; Jamnongjit, M.; Aronovitz, M.; Baur, W.; Ohtani, K.; Wilkerson, M. K.; Bonev, A. D.; Nelson, M. T.; Karas, R. H.; Mendelsohn, M. E. High Blood Pressure Arising from a Defect in Vascular Function. Proc. Natl. Acad. Sci. 2008, 105 (18), 6702–6707.

[112] Qi, Y.; Zhang, K.; Wu, Y.; Xu, Z.; Yong, Q. C.; Kumar, R.; Baker, K. M.; Zhu, Q.; Chen, S.; Guo, S. Novel Mechanism of Blood Pressure Regulation by Forkhead Box Class O1-Mediated Transcriptional Control of Hepatic Angiotensinogen. Hypertension 2014, 64 (5), 1131–1140.

[113] Ferrario, C. M. New Physiological Concepts of the Renin-Angiotensin System from the Investigation of Precursors and Products of Angiotensin I Metabolism. Hypertension 2010, 55 (2), 445–452.

[114] Chung, B. H.; Kim, S.; Kim, J. D.; Lee, J. J.; Baek, Y. Y.; Jeoung, D.; Lee, H.; Choe, J.; Ha, K. S.; Won, M. H.; Kwon, Y. G.; Kim, Y. M. Syringaresinol Causes Vasorelaxation by Elevating Nitric Oxide Production through the Phosphorylation and Dimerization of Endothelial Nitric Oxide Synthase. Exp. Mol. Med. 2012, 44 (3), 191–201.

[115] Lamping, K. Interactions between NO and cAMP in the Regulation of Vascular Tone. Arterioscler. Thromb. Vasc. Biol. 2001, 21 (5), 729–731.

[116] Brosnihan, K. B.; Senanayake, P. S.; Li, P.; Ferrario, C. M. Bi-Directional Actions of Estrogen on the Renin-Angiotensin System. Brazilian J. Med. Biol. Res. 1999, 32 (4), 373–381.

[117] Ferreira, A. J.; Raizada, M. K. Are We Poised to Target ACE2 for the next Generation of Antihypertensives? J. Mol. Med. 2008, 86, 685–690.

[118] Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120 (4), 713–735.

[119] García-Morales, V.; Luaces-Regueira, M.; Campos-Toimil, M. The cAMP Effectors PKA and Epac Activate Endothelial NO Synthase through PI3K/Akt Pathway in Human Endothelial Cells. Biochem. Pharmacol. 2017, 145, 94–101.

[120] Hyunjung, L.; Dey, S. K. Minireview: A Novel Pathway of Prostacyclin Signaling - Hanging out with Nuclear Receptors. Endocrinology 2002, 143 (9), 3207–3210.

[121] Bader, M.; Alenina, N.; Young, D.; Santos, R. A. S.; Touyz, R. M. The Meaning of Mas. Hypertension 2018, 72 (5), 1072–1075.

[122] Lin, L.; Liu, X.; Xu, J.; Weng, L.; Ren, J.; Ge, J.; Zou, Y. Mas Receptor Mediates Cardioprotection of Angiotensin-(1-7) against Angiotensin IIInduced Cardiomyocyte Autophagy and Cardiac Remodelling through Inhibition of Oxidative Stress. J. Cell. Mol. Med. 2016, 20 (1), 48–57.

[123] Dias-Peixoto, M. F.; Ferreira, A. J.; Almeida, P. W. M.; Braga, V. B. A.; Coutinho, D. C. O.; Melo, D. S.; Filho, A. G.; Melo, M. B.; Greco, L.; Campagnole-Santos, M. J.; Lima, R. F.; Santos, R. A. S.; Guatimosim, S. The Cardiac Expression of Mas Receptor Is Responsive to Different Physiological and Pathological Stimuli. Peptides 2012, 35 (2), 196–201.

[124] Xu, P.; Costa-Goncalves, A. C.; Todiras, M.; Rabelo, L. A.; Sampaio, W. O.; Moura, M. M.; Santos, S. S.; Luft, F. C.; Bader, M.; Gross, V.; Alenina, N.; Santos, R. A. S. Endothelial Dysfunction and Elevated Blood Pressure in Mas Gene-Deleted Mice. Hypertension 2008, 51 (2 PART 2), 574–580.

[125] Liu, Y.; Li, B.; Wang, X.; Li, G.; Shang, R.; Yang, J.; Wang, J.; Zhang, M.; Chen, Y.; Zhang, Y.; Zhang, C.; Hao, P. Angiotensin-(1–7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor. Mol. Med. 2015, 21, 626–636.

[126] Hajialyani, M.; Farzaei, M. H.; Echeverría, J.; Nabavi, S. M.; Uriarte, E.; Eduardo, S. S. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24 (3), 648.

[127] Gao, G.; Abe, C.; Nectoux, A. M.; Huang, S.; Miyata, Y.; Tanaka, K.; Tanaka, T.; Yamamura, H.; Matsui, T. Anti-Hypertensive Effect of Hesperidin and Hesperidin-Containing Fermented Mikan Tea in Spontaneously Hypertensive Rats. Food Sci. Technol. Res. 2020, 26 (6), 779–787.

[128] Valls, R. M.; Pedret, A.; Calderón-Pérez, L.; Llauradó, E.; Pla-Pagà, L.; Companys, J.; Moragas, A.; Martín-Luján, F.; Ortega, Y.; Giralt, M.; Romeu, M.; Rubió, L.; Mayneris-Perxachs, J.; Canela, N.; Puiggrós, F.; Caimari, A.; Del Bas, J. M.; Arola, L.; Solà, R. Effects of Hesperidin in Orange Juice on Blood and Pulse Pressures in Mildly Hypertensive Individuals: A Randomized Controlled Trial (Citrus Study). Eur. J. Nutr. 2021, 60 (3), 1277–1288.

[129] Ferrario, C. M.; Trask, A. J.; Jessup, J. A. Advances in Biochemical and Functional Roles of Angiotensin-Converting Enzyme 2 and Angiotensin- (1-7) in Regulation of Cardiovascular Function. Am. J. Physiol. - Hear. Circ. Physiol. 2005, 289 (6), H2281–H2290.

[130] Su, J. Different Cross-Talk Sites between the Renin-Angiotensin and the Kallikrein-Kinin Systems. J. Renin-Angiotensin-Aldosterone Syst. 2014, 15 (4), 319–328.

[131] Gomes, E. R. M.; Lara, A. A.; Almeida, P. W. M.; Guimarães, D.; Resende, R. R.; Campagnole-Santos, M. J.; Bader, M.; Santos, R. A. S.; Guatimosim, S. Angiotensin-(1-7) Prevents Cardiomyocyte Pathological Remodeling through a Nitric Oxide/Guanosine 3′,5′-Cyclic MonophosphateDependent Pathway. Hypertension 2010, 55 (1), 153–160.

[132] Savoia, C.; Arrabito, E.; Parente, R.; Nicoletti, C.; Madaro, L.; Battistoni, A.; Filippini, A.; Steckelings, U. M.; Touyz, R. M.; Volpe, M. Mas Receptor Activation Contributes to the Improvement of Nitric Oxide Bioavailability and Vascular Remodeling during Chronic AT1R (Angiotensin Type-1 Receptor) Blockade in Experimental Hypertension. Hypertension 2020, 76 (6), 1753–1761.

[133] Montt-Guevara, M. M.; Giretti, M. S.; Russo, E.; Giannini, A.; Mannella, P.; Genazzani, A. R.; Genazzani, A. D.; Simoncini, T. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells. Front. Endocrinol. (Lausanne). 2015, 6, 111.

[134] Peluso, A. A.; Bertelsen, J. B.; Andersen, K.; Mortsensen, T. P.; Hansen, P. B.; Sumners, C.; Bader, M.; Santos, R. A.; Steckelings, U. M. Identification of Protein Phosphatase Involvement in the AT2 ReceptorInduced Activation of Endothelial Nitric Oxide Synthase. Clin. Sci. 2018, 132 (7), 777–790.

[135] Mesquita, T. R. R.; Campos-Mota, G. P.; Lemos, V. S.; Cruz, J. S.; de Jesus, I. C. G.; Camargo, E. A.; Pesquero, J. L.; Pesquero, J. B.; Capettini, L. dos S. A.; Lauton-Santos, S. Vascular Kinin B1 and B2 Receptors Determine Endothelial Dysfunction through Neuronal Nitric Oxide Synthase. Front. Physiol. 2017, 8, 228.

[136] Ching, L.; Kou, Y.; Shyue, S.; Su, K.; Wei, J.; Cheng, L.; Yu, Y.; Pan, C.; Lee, T. Molecular Mechanisms of Activation of Endothelial Nitric Oxide Synthase Mediated by Transient Receptor Potential Vanilloid Type 1. Cardiovasc. Res. 2011, 91 (3), 492–501.

[137] Lee, G. H.; Kim, C. Y.; Zheng, C.; Jin, S. W.; Kim, J. Y.; Lee, S. Y.; Kim, M. Y.; Han, E. H.; Hwang, Y. P.; Jeong, H. G. Rutaecarpine Increases Nitric Oxide Synthesis via Enos Phosphorylation by TRPV1-Dependent CaMKII and CaMKKβ/AMPK Signaling Pathway in Human Endothelial Cells. Int. J. Mol. Sci. 2021, 22 (17), 9407.

[138] Klawitter, J.; Hildreth, K. L.; Christians, U.; Kohrt, W. M.; Moreau, K. L. A Relative L-Arginine Deficiency Contributes to Endothelial Dysfunction across the Stages of the Menopausal Transition. Physiol. Rep. 2017, 5 (17), e13409.

[139] Yang, S.; Zhou, G.; Liu, H.; Zhang, B.; Li, J.; Cui, R.; Du, Y. Protective Effects of p38 MAPK Inhibitor SB202190 against Hippocampal Apoptosis and Spatial Learning and Memory Deficits in a Rat Model of Vascular Dementia. Biomed Res. Int. 2013, 2013, 215798.

[140] Gironacci, M. M. Angiotensin-(1–7): Beyond Its Central Effects on Blood Pressure. Ther. Adv. Cardiovasc. Dis. 2015, 9 (4), 209–216.

[141] Chen Kejing; Popel, A. S. Nitric Oxide Production Pathways in Erythrocytes and Plasma. Biorheology 2009, 46 (2), 107–119.

[142] Santos, R. A. S.; Sampaio, W. O.; Alzamora, A. C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santo, M. J. The ACE2/Angiotensin- (1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin- (1-7). Physiol. Rev. 2018, 98 (1), 505–553.

[143] McKinney, C. A.; Fattah, C.; Loughrey, C. M.; Milligan, G.; Nicklin, S. A. Angiotensin-(1-7) and Angiotensin-(1-9): Function in Cardiac and Vascular Remodelling. Clin. Sci. 2014, 126 (12), 815–827.

[144] Gironacci, M. M.; Adamo, H. P.; Corradi, G.; Santos, R. A.; Ortiz, P.; Carretero, O. A. Angiotensin (1-7) Induces Mas Receptor Internalization. Hypertension 2011, 58 (2), 176–181.

[145] Sampaio, W. O.; Dos Santos, R. A. S.; Faria-Silva, R.; Da Mata Machado, L. T.; Schiffrin, E. L.; Touyz, R. M. Angiotensin-(1-7) through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via AktDependent Pathways. Hypertension 2007, 49 (1), 185–192.

[146] Ali, Q.; Wu, Y.; Hussain, T. Chronic AT2 Receptor Activation Increases Renal ACE2 Activity, Attenuates AT1 Receptor Function and Blood Pressure in Obese Zucker Rats. Kidney Int. 2013, 84 (5), 931–939.

[147] Erfinanda, L.; Ravindran, K.; Kohse, F.; Gallo, K.; Preissner, R.; Walther, T.; Kuebler, W. M. Oestrogen-Mediated Upregulation of the Mas Receptor Contributes to Sex Differences in Acute Lung Injury and Lung Vascular Barrier Regulation. Eur. Respir. J. 2021, 57 (1), 1–11.

[148] Su, J. B. Role of Bradykinin in the Regulation of Endothelial Nitric Oxide Synthase Expression by Cardiovascular Drugs. Curr. Pharm. Des. 2018, 23 (40), 6215–6222.

[149] Wang, Y.; Cui, L.; Xu, H.; Liu, S.; Zhu, F.; Yan, F.; Shen, S.; Zhu, M. TRPV1 Agonism Inhibits Endothelial Cell Inflammation via Activation of ENOS/NO Pathway. Atherosclerosis 2017, 260, 13–19.

[150] Baylie, R. L.; Brayden, J. E. TRPV Channels and Vascular Function. Acta Physiol. 2011, 203 (1), 99–116.

[151] Negri, S.; Faris, P.; Rosti, V.; Antognazza, M. R.; Lodola, F.; Moccia, F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020, 9 (6), 1341.

[152] Chen, M.; Xin, J.; Liu, B.; Luo, L.; Li, J.; Yin, W.; Li, M. MitogenActivated Protein Kinase and Intracellular Polyamine Signaling Is Involved in TRPV1 Activation-Induced Cardiac Hypertrophy. J. Am. Heart Assoc. 2016, 5 (8), e003718.

[153] Cao, L.; Xun, J.; Jiang, X.; Tan, R. Propofol Up-Regulates Mas Receptor Expression in Dorsal Root Ganglion Neurons. Pharmazie 2013, 68 (8), 677–680.

[154] Rabie, M. A.; Abd El Fattah, M. A.; Nassar, N. N.; El-Abhar, H. S.; Abdallah, D. M. Angiotensin 1-7 Ameliorates 6-Hydroxydopamine Lesions in Hemiparkinsonian Rats through Activation of MAS Receptor/PI3K/Akt/BDNF Pathway and Inhibition of Angiotensin II Type-1 Receptor/NF-κB Axis. Biochem. Pharmacol. 2018, 151, 126–134.

[155] Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 Structures in Nanodiscs Reveal Mechanisms of Ligand and Lipid Action. Nature 2016, 534 (7607), 347–351.

参考文献をもっと見る