リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication

Matsumura, Hideo Hsiao, Min-Chien Lin, Ya-Ping Toyoda, Atsushi Taniai, Naoki Tarora, Kazuhiko Urasaki, Naoya Anand, Shashi S. Dhillon, Narinder P. S. Schafleitner, Roland 信州大学 DOI:32461376

2022.01.27

概要

The genetic architecture of quantitative traits is determined by both Mendelian and polygenic factors, yet classic examples of plant domestication focused on selective sweep of newly mutated Mendelian genes. Here we report the chromosome-level genome assembly and the genomic investigation of a nonclassic domesti- cation example, bitter gourd (Momordica charantia), an important Asian vegetable and medicinal plant of the family Cucurbitaceae. Population resequencing revealed the divergence between wild and South Asian cultivars about 6,000 y ago, followed by the sep- aration of the Southeast Asian cultivars about 800 y ago, with the latter exhibiting more extreme trait divergence from wild progen- itors and stronger signs of selection on fruit traits. Unlike some crops where the largest phenotypic changes and traces of selec- tion happened between wild and cultivar groups, in bitter gourd large differences exist between two regional cultivar groups, likely reflecting the distinct consumer preferences in different countries. Despite breeding efforts toward increasing female flower proportion, a gynoecy locus exhibits complex patterns of balanced polymorphism among haplogroups, with potential signs of selective sweep within haplogroups likely reflecting artificial selection and introgression from cultivars back to wild accessions. Our study highlights the importance to investigate such nonclassic example of domestication showing signs of balancing selection and polygenic trait architecture in addition to classic selective sweep in Mendelian factors.

この論文で使われている画像

参考文献

1. R. S. Meyer, M. D. Purugganan, Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

2. R.-L. Wang, A. Stec, J. Hey, L. Lukens, J. Doebley, The limits of selection during maize domestication. Nature 398, 236–239 (1999).

3. S. Konishi et al., An SNP caused loss of seed shattering during rice domestication.Science 312, 1392–1396 (2006).

4. M. Wang et al., The genome sequence of African rice (Oryza glaberrima) and evi- dence for independent domestication. Nat. Genet. 46, 982–988 (2014).

5. M. Y. Zaman, S. S. Alam, Karyotype diversity in three cultivars of Momordica charantia L. Cytologia 74, 473–478 (2009).

6. N. Urasaki et al., Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res. 24, 51–58 (2017).

7. S. P. Tan, T. C. Kha, S. E. Parks, P. D. Roach, Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review. Food Rev. Int. 32, 181–202 (2016).

8. M. B. Krawinkel, G. B. Keding, Bitter gourd (Momordica Charantia): A dietary ap- proach to hyperglycemia. Nutr. Rev. 64, 331–337 (2006).

9. S. S. Renner, H. Schaefer, Phylogeny and Evolution of the Cucurbitaceae. Genetics and Genomics of Cucurbitaceae, (Springer, 2016), pp. 13–23.

10. A. B. Gaikwad et al., Amplified fragment length polymorphism analysis provides strategies for improvement of bitter gourd (Momordica charantia L.). HortScience 43, 127–133 (2008).

11. S. Saxena et al., Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utili- zation in analysis of genetic diversity and cross-species transferability. Appl. Biochem. Biotechnol. 175, 93–118 (2015).

12. N. P. S. Dhillon, S. Sanguansil, R. Schafleitner, Y.-W. Wang, J. D. McCreight, Diversity among a wide Asian collection of bitter gourd landraces and their genetic relation- ships with commercial hybrid cultivars. J. Am. Soc. Hortic. Sci. 141, 475–484 (2016).

13. H. Matsumura, M.-C. Hsiao, A. Toyoda, N. Taniai, N. Miyagi, K. Tarora, N. Urasaki, C.-R. Lee, Momordica charantia DNA contig, BLBB01000001-BLBB01000193, DDBJ Anno- tated/Assembled Sequences database. http://getentry.ddbj.nig.ac.jp/getentry/na/ BLBB010000001/ to http://getentry.ddbj.nig.ac.jp/getentry/na/BLBB010000193/. De- posited 7 Nov 2019.

14. H. Matsumura, Momordica charantia PacBio Sequel sequencing, DRA009109, DDBJ Sequence Read Archive. http://trace.ddbj.nig.ac.jp/DRASearch/submission?acc=DRA009109. Deposited 17 October 2019.

15. H. Matsumura, Momordica charantia Illumina sequencing, DRA009106, DDBJ Sequence Read Archive. http://trace.ddbj.nig.ac.jp/DRASearch/submission?acc=DRA009106. Deposited 15 October 2019.

16. J. Cui et al., A RAD-based genetic map for anchoring scaffold sequences and identi- fying QTLs in bitter gourd (Momordica charantia). Front Plant Sci 9, 477 (2018).

17. S. Guo et al., Resequencing of 414 cultivated and wild watermelon accessions iden- tifies selection for fruit quality traits. Nat. Genet. 51, 1616–1623 (2019).

18. H. Sun et al., Karyotype stability and unbiased fractionation in the paleo- allotetraploid Cucurbita genomes. Mol. Plant 10, 1293–1306 (2017).

19. S. Wu et al., The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus. Plant J. 92, 963–975 (2017).

20. M.-C. Hsiao, S. S. Anand, R. Schafleitner, C.-R. Lee, Population whole genome se- quencing of Momordica charantia, PRJNA578358, National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/bioproject/578358. Deposited 18 October 2019.

21. J. Terhorst, J. A. Kamm, Y. S. Song, Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

22. J. Guo et al., Global genetic differentiation of complex traits shaped by natural se- lection in humans. Nat. Commun. 9, 1865 (2018).

23. Z. Liu, R. G. Franks, V. P. Klink, Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12, 1879–1892 (2000).

24. K. M. Klucher, H. Chow, L. Reiser, R. L. Fischer, The AINTEGUMENTA gene of Arabi- dopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8, 137–153 (1996).

25. Y. Mizukami, R. L. Fischer, Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. U.S.A. 97, 942–947 (2000).

26. G. Cnops et al., The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell 18, 852–866 (2006).

27. W.-H. Chiu, J. Chandler, G. Cnops, M. Van Lijsebettens, W. Werr, Mutations in the TORNADO2 gene affect cellular decisions in the peripheral zone of the shoot apical meristem of Arabidopsis thaliana. Plant Mol. Biol. 63, 731–744 (2007).

28. E. Oren et al., The multi-allelic APRR2 gene is associated with fruit pigment accu- mulation in melon and watermelon. J. Exp. Bot. 70, 3781–3794 (2019).

29. Y. Pan et al., Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 161, 1476–1485 (2013).

30. G. Zhao et al., A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 51, 1607–1615 (2019).

31. H. Matsumura et al., Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS One 9, e87138 (2014).

32. X. M. Xu et al., NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/ megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548 (2007).

33. M. van Zonneveld et al., Screening genetic resources of Capsicum peppers in their primary center of diversity in Bolivia and Peru. PLoS One 10, e0134663 (2015).

34. T. K. Behera et al., Bitter gourd: Botany, horticulture, breeding. Hortic. Rev. (Am. Soc. Hortic. Sci.) 37, 101–141 (2010).

35. M. B. Hufford et al., Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808–811 (2012).

36. T. Lin et al., Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

37. C.-R. Lee et al., Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat. Ecol. Evol. 1, 119 (2017).

38. Y. Wu, P. R. Bhat, T. J. Close, S. Lonardi, Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 4, e1000212 (2008).

39. H. Tang et al., ALLMAPS: Robust scaffold ordering based on multiple maps. Genome Biol. 16, 3 (2015).

40. J. M. Argyris et al., Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genom. 16, 4 (2015).

41. Q. Li et al., A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). Gigascience 8, giz072 (2019).

42. S. Guo et al., The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45, 51–58 (2013).

43. C. Soderlund, M. Bomhoff, W. M. Nelson, SyMAP v3.4: A turnkey synteny system with application to plant genomes. Nucleic Acids Res. 39, e68 (2011).

44. M. Tarailo-Graovac, N. Chen, Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. Chapter 4, Unit 4 10 (2009).

45. A. F. A. Smit, R. Hubley, RepeatModeler Open-1.0 (2008–2015). http://www.repeatmasker.org. Accessed 29 May 2019.

46. W. Bao, K. K. Kojima, O. Kohany, Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

47. D. Kim, B. Langmead, S. L. Salzberg, HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

48. M. Pertea et al., StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

49. B. J. Haas et al., De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

50. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

51. UniProt Consortium, UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

52. M. Stanke, B. Morgenstern, AUGUSTUS: A web server for gene prediction in eu- karyotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).

53. R. M. Waterhouse et al., BUSCO applications from quality assessments to gene pre- diction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

54. B. J. Haas et al., Automated eukaryotic gene structure annotation using EVidence- Modeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

55. S. Götz et al., High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

56. L. M. Engle, F. C. Faustino, Conserving the indigenous vegetable germplasm of southeast Asia. Acta Hortic 752, 55–60 (2007).

57. O. Ka, Y. Endo, J. Yokoyama, N. Murakami, Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. J. Jpn. Bot. 70, 328–331 (1995).

58. M. P. Cox, D. A. Peterson, P. J. Biggs, SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinf. 11, 485 (2010).

59. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10 (2011).

60. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

61. A. McKenna et al., The genome analysis toolkit: A MapReduce framework for ana- lyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

62. P. Danecek et al.; 1000 Genomes Project Analysis Group, The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

63. S. Purcell et al., PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

64. P. J. Bradbury et al., TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

65. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

66. R. M. Francis, pophelper: An R package and web app to analyse and visualize pop- ulation structure. Mol. Ecol. Resour. 17, 27–32 (2017).

67. C. Zhang, S. S. Dong, J. Y. Xu, W. M. He, T. L. Yang, PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bio- informatics 35, 1786–1788 (2019).

68. L. Zhu, C. D. Bustamante, A composite-likelihood approach for detecting directional selection from DNA sequence data. Genetics 170, 1411–1421 (2005).

69. P. Pavlidis, D. Živkovic, A. Stamatakis, N. Alachiotis, SweeD: Likelihood-based de- tection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).

70. H. Chen, N. Patterson, D. Reich, Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

参考文献をもっと見る