リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「KIR3DL1 Allotype-Dependent Modulation of NK Cell Immunity against Chronic Myeloid Leukemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

KIR3DL1 Allotype-Dependent Modulation of NK Cell Immunity against Chronic Myeloid Leukemia

Izumi, Kiyotaka 京都大学 DOI:10.14989/doctor.k23775

2022.03.23

概要

【背景】
チロシンキナーゼ阻害剤(TKI)の投与を受けた慢性骨髄性白血病(CML)患者のうちNK 細胞の増加を伴う症例は良好な予後を示す (Lancet Hematol 2015; 2: e528, Leukemia 2017;35: 298)。NK 細胞の機能は細胞表面に発現する種々の受容体により調節されるが、中でも killercell immunoglobulin-like receptor (KIR)は、複数のサブタイプと豊富なアレル多型を有している。その一つKIR3DL1はNK細胞を抑制する受容体で、HLA-Bを主なリガンドとする。KIR3DL1とHLA-B の会合親和性は両アレルの組み合わせで強・弱・なしの3 段階に分類され、親和性が高いほど NK 細胞を強く抑制する。KIR3DL1 アレル多型が CML における TKI の効果と相関するとされ(Cancer Immunol Res 2018; 6: 745)、CML におけるKIR3DL1 の重要性が示唆された。そこで本研究では CML に対する NK 細胞免疫が KIR3DL1 アレル多型によりどう調節されるかを解析した。

【方法】
CML 由来細胞株K562 をヒトNK 細胞と共培養し、NK 細胞のCD107a 脱顆粒と細胞傷害活性をフローサイトメトリーで測定した。標的としてK562 に加えて複数のHLA アレルを導入したK562、TKI 耐性遺伝子T315I 変異を導入したK562(T315I 株)およびHLA 導入T315I 株を使用した。NK 細胞として健常人と CML 患者末梢血由来の単核球、さらに NK 細胞株 NK-92とKIR3DL1 導入NK-92 を用いた。

【結果】
末梢血 NK 細胞における KIR3DL1 蛋白の発現レベルは KIR3DL1 アレルで規定され、低発現(3DL1-low: *007)と高発現(3DL1-high:*01502、*001)とに分類された。KIR3DL1 陽性NK細胞の CD107a 脱顆粒は KIR3DL1 発現レベルと HLA-B の組み合わせに基づいて調節された。すなわち3DL1-low NK 細胞のCD107a 脱顆粒はB*44:03 導入株との共培養でK562 親株と同等の活性を示したが、B*52:01 導入株との共培養では抑制された。一方3DL1-high NK 細胞の活性は両者でともに抑制された。また抗 KIR3DL1 抗体 Z27 の添加でこれらの抑制はいずれも解除された。TKI の 1 つ dasatinib に NK 細胞を暴露すると、KIR3DL1 と HLA-B の会合親和性が弱いもしくはない場合に、NK 細胞活性が増強した。T315I 変異を有する K562 株に対してもdasatinib はNK 細胞の細胞傷害性を増強した。NK-92 細胞にKIR3DL1*01502 アレルを導入すると細胞表面にKIR3DL1 蛋白が発現し、その細胞傷害活性は標的細胞に発現するHLA-B に依存して抑制された。ここでもZ27 の添加で、HLA-B によるNK-92 への抑制が解除された。さらにCML 患者のNK 細胞でも、健常人由来NK 細胞と同様にKIR3DL1 の発現レベルによってHLAB による抑制度合いが規定された。

【結論】
KIR3DL1 とHLA-B アレルの組み合わせがdasatinib によるNK 細胞活性化を調節することが示された。本研究は CML に対する NK 細胞免疫において KIR3DL1 が重要な役割を担うことを裏付けるとともに、アレル多型に基づいたKIR3DL1 シグナルの阻害が、CML に対する新規免疫チェックポイント阻害療法となる可能性を示すものである。

この論文で使われている画像

参考文献

1. Hochhaus, A., R. A. Larson, F. Guilhot, J. P. Radich, S. Branford, T. P. Hughes, M. Baccarani, M. W. Deininger, F. Cervantes, S. Fujihara, et al. IRIS Investigators. 2017. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med. 376: 917927.

2. Bower, H., M. Bjorkholm, P. W. Dickman, M. H € oglund, P. C. Lambert, € and T. M. L. Andersson. 2016. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J. Clin. Oncol. 34: 28512857.

3. Patel, A. B., T. O’Hare, and M. W. Deininger. 2017. Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol. Oncol. Clin. North Am. 31: 589612.

4. Efficace, F., and L. Cannella. 2016. The value of quality of life assessment in chronic myeloid leukemia patients receiving tyrosine kinase inhibitors. Hematology (Am. Soc. Hematol. Educ. Program). 2016: 170179.

5. Padula, W. V., R. A. Larson, S. B. Dusetzina, J. F. Apperley, R. Hehlmann, M. Baccarani, E. Eigendorff, J. Guilhot, F. Guilhot, R. Hehlmann, et al. 2016. Cost-effectiveness of tyrosine kinase inhibitor treatment strategies for chronic myeloid leukemia in chronic phase after generic entry of imatinib in the United States. J. Natl. Cancer Inst. 108: djw003.

6. Yamamoto, C., H. Nakashima, T. Ikeda, S.-I. Kawaguchi, Y. Toda, S. Ito, K. Mashima, T. Nagayama, K. Umino, D. Minakata, et al. 2019. Analysis of the cost-effectiveness of treatment strategies for CML with incorporation of treatment discontinuation. Blood Adv. 3: 32663277.

7. Etienne, G., J. Guilhot, D. Rea, F. Rigal-Huguet, F. Nicolini, A. Charbonnier, A. Guerci-Bresler, L. Legros, B. Varet, M. Gardembas, et al. 2017. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J. Clin. Oncol. 35: 298305.

8. Imagawa, J., H. Tanaka, M. Okada, H. Nakamae, M. Hino, K. Murai, Y. Ishida, T. Kumagai, S. Sato, K. Ohashi, et al. DADI Trial Group. 2015. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2: e528e535.

9. Ilander, M., U. Olsson-Stromberg, H. Schlums, J. Guilhot, O. Br € uck, € H. L€ahteenm€aki, T. Kasanen, P. Koskenvesa, S. Soderlund, M. € Hoglund, et al. 2016. Increased proportion of mature NK cells is € associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 31: 11081116.

10. Anfossi, N., P. Andre, S. Guia, C. S. Falk, S. Roetynck, C. A. Stewart, V. Breso, C. Frassati, D. Reviron, D. Middleton, et al. 2006. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 25: 331342.

11. Ljunggren, H.-G., and K. K€arre. 1990. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today. 11: 237244.

12. Horowitz, A., Z. Djaoud, N. Nemat-Gorgani, J. Blokhuis, H. G. Hilton, V. Beziat, K. J. Malmberg, P. J. Norman, L. A. Guethlein, and P. Parham. 2016. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol. 1: eaag1672.

13. Garcia, C. A., J. Robinson, L. A. Guethlein, P. Parham, J. A. Madrigal, and S. G. E. Marsh. 2003. Human KIR sequences 2003. Immunogenetics. 55: 227239.

14. Middleton, D., and F. Gonzelez. 2010. The extensive polymorphism of KIR genes. Immunology. 129: 819.

15. Litwin, V., J. Gumperz, P. Parham, J. H. Phillips, and L. L. Lanier. 1994. NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J. Exp. Med. 180: 537543.

16. Wan, A. M., P. Ennis, P. Parham, and N. Holmes. 1986. The primary structure of HLA-A32 suggests a region involved in formation of the Bw4/Bw6 epitopes. J. Immunol. 137: 36713674.

17. Muller, C. A., G. Engler-Blum, V. Gekeler, I. Steiert, E. Weiss, and H. € Schmidt. 1989. Genetic and serological heterogeneity of the supertypic HLA-B locus specificities Bw4 and Bw6. Immunogenetics. 30: 200207.

18. Gumperz, J. E., V. Litwin, J. H. Phillips, L. L. Lanier, and P. Parham. 1995. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J. Exp. Med. 181: 11331144.

19. Gardiner, C. M., L. A. Guethlein, H. G. Shilling, M. Pando, W. H. Carr, R. Rajalingam, C. Vilches, and P. Parham. 2001. Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J. Immunol. 166: 29923001.

20. Pando, M. J., C. M. Gardiner, M. Gleimer, K. L. McQueen, and P. Parham. 2003. The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J. Immunol. 171: 66406649.

21. Trundley, A., H. Frebel, D. Jones, C. Chang, and J. Trowsdale. 2007. Allelic expression patterns of KIR3DS1 and 3DL1 using the Z27 and DX9 antibodies. Eur. J. Immunol. 37: 780787.

22. Thomas, R., E. Yamada, G. Alter, M. P. Martin, A. A. Bashirova, P. J. Norman, M. Altfeld, P. Parham, S. K. Anderson, D. W. McVicar, and M. Carrington. 2008. Novel KIR3DL1 alleles and their expression levels on NK cells: convergent evolution of KIR3DL1 phenotype variation? J. Immunol. 180: 67436750. ImmunoHorizons KIR3DL1 ALLOTYPE-DEPENDENT NK CELL MODULATION AGAINST CML 701 https://doi.org/10.4049/immunohorizons.2100054 by guest on August 29, 2021 http://www.immunohorizons.org/ Downloaded from

23. Sharma, D., K. Bastard, L. A. Guethlein, P. J. Norman, N. Yawata, M. Yawata, M. Pando, H. Thananchai, T. Dong, S. Rowland-Jones, et al. 2009. Dimorphic motifs in D0 and D11D2 domains of killer cell Iglike receptor 3DL1 combine to form receptors with high, moderate, and no avidity for the complex of a peptide derived from HIV and HLA-A*2402. J. Immunol. 183: 45694582.

24. Parham, P., P. J. Norman, L. Abi-Rached, and L. A. Guethlein. 2011. Variable NK cell receptors exemplified by human KIR3DL1/S1. J. Immunol. 187: 1119.

25. Carr, W. H., M. J. Pando, and P. Parham. 2005. KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand. J. Immunol. 175: 52225229.

26. Yawata, M., N. Yawata, M. Draghi, A. M. Little, F. Partheniou, and P. Parham. 2006. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J. Exp. Med. 203: 633645.

27. O’Connor, G. M., K. J. Guinan, R. T. Cunningham, D. Middleton, P. Parham, and C. M. Gardiner. 2007. Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells. J. Immunol. 178: 235241.

28. Boudreau, J. E., T. J. Mulrooney, J.-B. Le Luduec, E. Barker, and K. C. Hsu. 2016. KIR3DL1 and HLA-B Density and Binding Calibrate NK Education and Response to HIV. J. Immunol. 196: 33983410.

29. Martin, M. P., Y. Qi, X. Gao, E. Yamada, J. N. Martin, F. Pereyra, S. Colombo, E. E. Brown, W. L. Shupert, J. Phair, et al. 2007. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39: 733740.

30. Forlenza, C. J., J. E. Boudreau, J. Zheng, J. B. Le Luduec, E. Chamberlain, G. Heller, N. K. V. Cheung, and K. C. Hsu. 2016. KIR3DL1 allelic polymorphism and HLA-B epitopes modulate response to Anti-GD2 monoclonal antibody in patients with neuroblastoma. J. Clin. Oncol. 34: 24432451.

31. Boudreau, J. E., F. Giglio, T. A. Gooley, P. A. Stevenson, J. B. Le Luduec, B. C. Shaffer, R. Rajalingam, L. Hou, C. K. Hurley, H. Noreen, et al. 2017. KIR3DL1/HLA-B subtypes govern acute myelogenous leukemia relapse after hematopoietic cell transplantation. J. Clin. Oncol. 35: 22682278.

32. Schetelig, J., H. Baldauf, F. Heidenreich, C. Massalski, S. Frank, J. Sauter, M. Stelljes, F. A. Ayuk, W. A. Bethge, G. Bug, et al. 2020. External validation of models for KIR2DS1/KIR3DL1-informed selection of hematopoietic cell donors fails. Blood. 135: 13861395.

33. Boudreau, J. E., and K. C. Hsu. 2018. Natural killer cell education in human health and disease. Curr. Opin. Immunol. 50: 102111.

34. Ureshino, H., T. Shindo, H. Kojima, Y. Kusunoki, Y. Miyazaki, H. Tanaka, H. Saji, A. Kawaguchi, and S. Kimura. 2018. Allelic polymorphisms of KIRs and HLAs predict favorable responses to tyrosine kinase inhibitors in CML. Cancer Immunol. Res. 6: 745754.

35. Tanaka, A., H. Nishikawa, S. Noguchi, D. Sugiyama, H. Morikawa, Y. Takeuchi, D. Ha, N. Shigeta, T. Kitawaki, Y. Maeda, et al. 2020. Tyrosine kinase inhibitor imatinib augments tumor immunity by depleting effector regulatory T cells. J. Exp. Med. 217: e20191009.

36. Hekim, C., M. Ilander, J. Yan, E. Michaud, R. Smykla, M. V€ah€a-Koskela, P. Savola, S. T€ahtinen, L. Saikko, A. Hemminki, et al. 2017. Dasatinib changes immune cell profiles concomitant with reduced tumor growth in several murine solid tumor models. Cancer Immunol. Res. 5: 157169.

37. Tamai, M., T. Inukai, S. Kojika, M. Abe, K. Kagami, D. Harama, T. Shinohara, A. Watanabe, H. Oshiro, K. Akahane, et al. 2018. T315I mutation of BCR-ABL1 into human Philadelphia chromosome-positive leukemia cell lines by homologous recombination using the CRISPR/Cas9 system. Sci. Rep. 8: 9966.

38. Sutlu, T., S. Nystrom, M. Gilljam, B. Stellan, S. E. Applequist, and E. € Alici. 2012. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum. Gene Ther. 23: 10901100.

39. Saunders, P. M., P. Pymm, G. Pietra, V. A. Hughes, C. Hitchen, G. M. O’Connor, F. Loiacono, J. Widjaja, D. A. Price, M. Falco, et al. 2016. Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J. Exp. Med. 213: 791807.

40. Foley, B. A., D. De Santis, E. Van Beelen, L. J. Lathbury, F. T. Christiansen, and C. S. Witt. 2008. The reactivity of Bw41 HLA-B and HLA-A alleles with KIR3DL1: implications for patient and donor suitability for haploidentical stem cell transplantations. Blood. 112: 435443.

41. Tremblay-McLean, A., S. Coenraads, Z. Kiani, F. P. Dupuy, and N. F. Bernard. 2019. Expression of ligands for activating natural killer cell receptors on cell lines commonly used to assess natural killer cell function. BMC Immunol. 20: 8.

42. Chang, M. C., H. I. Cheng, K. Hsu, Y. N. Hsu, C. W. Kao, Y. F. Chang, K. H. Lim, and C. G. Chen. 2019. NKG2A down-regulation by dasatinib enhances natural killer cytotoxicity and accelerates effective treatment responses in patients with chronic myeloid leukemia. Front. Immunol. 9: 3152.

43. Kohrt, H. E., A. Thielens, A. Marabelle, I. Sagiv-Barfi, C. Sola, F. Chanuc, N. Fuseri, C. Bonnafous, D. Czerwinski, A. Rajapaksa, et al. 2014. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with antiCD20 antibodies. Blood. 123: 678686.

44. Armand, P., A. Lesokhin, I. Borrello, J. Timmerman, M. Gutierrez, L. Zhu, M. Popa McKiver, and S. M. Ansell. 2020. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia. 35: 777786.

45. Binyamin, L., R. K. Alpaugh, T. L. Hughes, C. T. Lutz, K. S. Campbell, and L. M. Weiner. 2008. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. J. Immunol. 180: 63926401.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る