リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antimicrobial Photodynamic Therapy with the photosensitizer TONS504 eradicates Acanthamoeba」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antimicrobial Photodynamic Therapy with the photosensitizer TONS504 eradicates Acanthamoeba

Pertiwi Yunialthy Dwia 広島大学

2020.09.18

概要

Background:
Microbial keratitis is a potential cause of corneal blindness. We investigated the amoebicidal efficacy of photodynamic antimicrobial therapy with a light-emitting diode as the light source and the cationic chlorin derivative TONS504 as the photosensitizer for the elimination of Acanthamoeba, a causative organism of corneal infection and blindness. Acanthamoeba keratitis remains a challenge to treat because of limited available treatments.

Methods:
Acanthamoeba castellani 50370 was exposed to TONS504 at various concentrations (0, 1, or 10 mg/L for trophozoites; 0, 1, 10, or 20 mg/L for cysts), irradiated at various light energies (0, 10, or 30 J/cm2 for trophozoites; 0, 30, or 60 J/cm2 for cysts), and incubated at 26 °C for 3 h. Assessment of cell viability by trypan blue staining revealed that photodynamic antimicrobial therapy attenuated the survival of trophozoites and cysts dependent on TONS504 concentration and light energy.

Results:
Photodynamic antimicrobial therapy with 10 mg/L TONS504 and 30 J/cm2 light energy suppressed trophozoite viability by 77%, and 20 mg/L TONS504 and 60 J/cm2 light energy attenuated cyst survival by 42%. Staining with fluorescein isothiocyanate–conjugated annexin V and ethidium homodimer III revealed photodynamic antimicrobial therapy induced apoptosis and necrosis in trophozoites dependent upon the intensity of treatment, whereas apoptosis was the predominant form of cell death in cysts.

Conclusions:
Photodynamic antimicrobial therapy with TONS504 warrants further investigation as a potential treatment modality for Acanthamoeba keratitis.

この論文で使われている画像

参考文献

[1] N.A. Khan, Acanthamoeba: Biology and increasing importance in human health, FEMS Microbiol. Rev. 30 (2006) 564–595, https://doi.org/10.1111/j.1574-6976. 2006.00023.x.

[2] M.M. Juárez, L.I. Tártara, A.G. Cid, J.P. Real, J.M. Bermúdez, V.B. Rajal, S.D. Palma, Acanthamoeba in the eye, can the parasite hide even more? Latest developments on the disease, Contact Lens Anterior Eye 41 (2018) 245–251, https://doi.org/10.1016/j.clae.2017.12.017.

[3] J.K.G. Dart, V.P.J. Saw, S. Kilvington, Acanthamoeba Keratitis: Diagnosis and Treatment Update 2009, Am. J. Ophthalmol. 148 (2009) 487–499, https://doi.org/ 10.1016/j.ajo.2009.06.009 e2.

[4] J. Lorenzo-Morales, N.A. Khan, J. Walochnik, An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment, Parasite 22 (2015) 10, https://doi.org/ 10.1051/parasite/2015010.

[5] H. Nakagawa, T. Hattori, N. Koike, T. Ehara, K. Fujita, H. Takahashi, S. Kumakura, M. Kuroda, T. Matsumoto, H. Goto, Investigation of the role of bacteria in the development of Acanthamoeba Keratitis, Cornea 34 (2015) 1308–1315, https://doi. org/10.1097/ICO.0000000000000541.

[6] P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, J. Golab, Photodynamic therapy of cancer: an update, CA Cancer J. Clin. 61 (2011) 250–281, https://doi.org/10.3322/caac. 20114.

[7] R.R. Allison, K. Moghissi, Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action, Photodiagn. Photodyn. Ther. 10 (2013) 331–341, https://doi.org/10.1016/j.pdpdt.2013.03.011.

[8] L. De Sordi, M.A. Butt, H. Pye, D. Kohoutova, C.A. Mosse, G. Yahioglu, I. Stamati, M. Deonarain, S. Battah, D. Ready, E. Allan, P. Mullany, L.B. Lovat, Development of Photodynamic Antimicrobial Chemotherapy (PACT) for clostridium difficile, PLoS One 10 (2015) 1–17, https://doi.org/10.1371/journal.pone.0135039.

[9] A.P. Castano, T.N. Demidova, M.R. Hamblin, Mechanisms in photodynamic therapy: part one - Photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther. 1 (2004) 279–293, https://doi.org/10.1016/S1572- 1000(05)00007-4.

[10] L. Huang, Y. Xuan, Y. Koide, T. Zhiyentayev, M. Tanaka, M.R. Hamblin, Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on Gram-negative and Gram-positive bacteria, Lasers Surg. Med. 44 (2012) 490–499, https://doi.org/10.1002/lsm.22045.

[11] H. Ding, H. Yu, Y. Dong, R. Tian, G. Huang, D.A. Boothman, B.D. Sumer, J. Gao, Photoactivation switch from type II to type i reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia, J. Control. Release 156 (2011) 276–280, https://doi.org/10.1016/j.jconrel.2011.08.019.

[12] K. Sueoka, T. Chikama, Y.D. Pertiwi, J.-A. Ko, Y. Kiuchi, T. Sakaguchi, A. Obana, Antifungal efficacy of photodynamic therapy with TONS 504 for pathogenic filamentous fungi, Lasers Med. Sci. (2018), https://doi.org/10.1007/s10103-018- 2654-y.

[13] K. Sueoka, T. Chikama, M.A. Latief, J.A. Ko, Y. Kiuchi, T. Sakaguchi, A. Obana, Time-dependent antimicrobial effect of photodynamic therapy with TONS 504 on Pseudomonas aeruginosa, Lasers Med. Sci. (2018) 1–6, https://doi.org/10.1007/ s10103-018-2490-0.

[14] M.A. Latief, T. Chikama, J. Ko, Y. Kiuchi, T. Sakaguchi, Inactivation of acyclovirsensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy, Mol. Vis. 21 (2015) 532–537.

[15] M.A. Latief, T. Chikama, M. Shibasaki, T. Sasaki, J.A. Ko, Y. Kiuchi, T. Sakaguchi, A. Obana, Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro, Lasers Med. Sci. 30 (2014) 383–387, https:// doi.org/10.1007/s10103-014-1681-6.

[16] S.A. Altman, L. Randers, G. Rao, Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations, Biotechnol. Prog. 9 (1993) 671–674, https://doi.org/10.1021/bp00024a017.

[17] M.R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3 (2014) 436–450, https://doi.org/ 10.1039/b311900a.

[18] L. Ficker, D. Seal, D. Warhurst, P. Wright, Acanthamoeba keratitis—resistance to medical therapy, Eye 4 (1990) 835–838, https://doi.org/10.1038/eye.1990.132.

[19] L. Huang, T. Dai, M.R. Hamblin, Antimicrobial photodynamic inactivation and photodynamic therapy for infections, Methods Mol. Biol. 635 (2010) 1–18, https:// doi.org/10.1007/978-1-60761-697-9.

[20] N.L. Oleinick, R.L. Morrisa, I. Belichenkoa, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci. 1 (2002) 1–21, https://doi.org/10.1039/b108586g.

[21] R. Siddiqui, N.A. Khan, Photochemotherapeutic strategies against Acanthamoeba keratitis, AMB Express 2 (2012) 47, https://doi.org/10.1186/2191-0855-2-47.

[22] T. Mito, T. Suzuki, T. Kobayashi, X. Zheng, Y. Hayashi, A. Shiraishi, Y. Ohashi, Effect of photodynamic therapy with methylene blue on Acanthamoeba in vitro, Investig. Ophthalmol. Vis. Sci. 53 (2012) 6305–6313, https://doi.org/10.1167/ iovs.12-9828.

[23] M.J. Casteel, K. Jayaraj, A. Gold, L.M. Ball, M.D. Sobsey, Photoinactivation of hepatitis A virus by synthetic porphyrins, Photochem. Photobiol. 80 (2004) 294–300, https://doi.org/10.1562/2004-04-05-RA-134.

[24] Y. Aqeel, R. Siddiqui, A. Anwar, M.R. Shah, S. Khoja, N.A. Khan, Photochemotherapeutic strategy against Acanthamoeba infections, Antimicrob. Agents Chemother. 59 (2015) 3031–3041, https://doi.org/10.1128/AAC. 05126-14.

[25] S. Ferro, O. Coppellotti, G. Roncucci, T. Ben Amor, G. Jori, Photosensitized inactivation of Acanthamoeba palestinensis in the cystic stage, J. Appl. Microbiol. 101 (2006) 206–212, https://doi.org/10.1111/j.1365-2672.2006.02893.x.

[26] T. Osaki, I. Sakata, Y. Uto, M. Yamashita, Y. Murahata, Effects of TONS504 ‑ photodynamic therapy on mouse mammary tumor cells, Oncol. Lett. (2018) 1–7, https://doi.org/10.3892/ol.2018.8887.

[27] Z. Chen, S. Xuguang, W. Zhiqun, L. Ran, In vitro amoebacidal activity of photodynamic therapy on Acanthamoeba, Br. J. Ophthalmol. 92 (2008) 1283–1286, https://doi.org/10.1136/bjo.2007.134288.

[28] M. van Engeland, L.J. Nieland, F.C. Ramaekers, B. Schutte, C.P. Reutelingsperger, Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure, Cytometry 31 (1998) 1–9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る