リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Distinctive roles of syntaxin binding protein 4 and its action target, TP63, in lung squamous cell carcinoma: a theranostic study for the precision medicine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Distinctive roles of syntaxin binding protein 4 and its action target, TP63, in lung squamous cell carcinoma: a theranostic study for the precision medicine

Bilguun, Erkhem-Ochir ビルグン, エルヘム オチル 群馬大学

2021.03.23

概要

Background:
Despite recent advances in therapeutics, lung squamous cell carcinoma (LSCC) remainsa challenging disease to treat. The advent of immune-checkpoint inhibitors along with severalactive target agents such as antiangiogenic agents has altered LSCC treatment to some extent,but treatment options remain limited. To date, very few druggable mutations and active predictive biomarkers have been identified; thus, no LSCC-specific target therapy has yet been established. The development of precision medicine with truly active target drugs is eagerly awaited.We previously found that Syntaxin Binding Protein 4 (STXBP4) plays a crucial role inlesion growth and, therefore, clinical outcomes in LSCC patients through regulation of tumorprotein p63 (TP63) ubiquitination. ΔNp63 is an isoform of TP63, a member of the TP53 family,and its expression is widely used as a highly specific diagnostic marker for LSCC. STXBP4 binds to ΔNp63 and suppresses the anaphase-promoting complex/cyclosome (APC/C) complex-mediatedproteolysis of ΔNp63, and drives the oncogenic potential of ΔNp63α. STXBP4 may be a usefultherapeutic target and/or marker for patients with LSCC.
 
Methods:
To clarify the impact of STXBP4 and TP63 for LSCC therapeutics, we assessed relevanceof these proteins to outcome of 144 LSCC patients at Gunma University Hospital from April 2001to December 2014.In addition, we examined whether its action pathway is distinct from those of currently useddrugs in in vitro experiments including RNA-seq analysis through comparison with the otherputative exploratory targets and/or markers including VEGFR2 (vascular endothelial growthfactor receptor 2), TUBB3 (tubulin beta 3), and PD-L1 (programmed cell death 1 ligand 1),along with p53 (tumor protein p53), ΔNp63 and STMN1 (stathmin 1).
 
Results:
Kaplan– Meier analysis revealed that, along with vascular endothelial growth factor receptor 2 (VEGFR2), STXBP4 expression signified a worse prognosis in LSCC patients, both in terms ofoverall survival (OS, p = 0.002) and disease-free survival (DFS, p = 0.041). These prognosticimpacts of STXBP4 were confirmed in univariate Cox regression analysis, but not in the multivariateanalysis. Whereas, TP63 (ΔNp63) closely related to OS (p = 0.013), and shown to be an independentprognostic factor for poor OS in the multivariate analysis (p = 0.0324). The action pathway ofSTXBP4 on suppression of TP63 (ΔNp63) was unique: Ingenuity pathway analysis using the knowledgedatabase and our RNAseq analysis in human LSCC cell lines indicated that 35 pathways were activatedor inactivated in association with STXBP4, but the action pathway of STXBP4 was distinct from thoseof other current drug targets: STXBP4, TP63 and KDR (VEGFR2 gene) formed a cluster independent fromother target genes of tumor protein p53 (TP53), tubulin beta 3 (TUBB3), stathmin 1 (STMN1) andcluster of differentiation 274 (CD274: programmed cell death 1 ligand 1, PD-L1). STXBP4 itselfappeared not to be a potent predictive marker of individual drug response, but we found that TP63,main action target of STXBP4, might be involved in drug resistance mechanisms of LSCC.
 
Conclusion:
STXBP4 and the action target, TP63, could afford a key to the development of precision medicine for LSCC patients.

この論文で使われている画像

参考文献

1. Paik PK, Pillai RN, Lathan CS, Velasco AS, Papadimitrakopoulou V. Newtreatment options in advanced squamous cell lung Cancer. Am Soc ClinOncol Educ Book. 2019;39:e198–206.

2. Daaboul N, Nicholas G, Laurie SA. Algorithm for the treatment of advancedor metastatic squamous non-small-cell lung cancer: an evidence-basedoverview. Curr Oncol. 2018;25(Suppl 1):S77–85.

3. Bertaglia V, Vallone S, Pacchiana MV, Novello S. Advanced squamous lungcancer: therapeutic options, future directions, unmet needs and results of amonocentric survey. Lung Cancer Manag. 2017;6(3):93–107.

4. Doroshow DB, Sanmamed MF, Hastings K, Politi K, David L, Rimm DL, ChenL, et al. Immunotherapy in non-small cell lung Cancer: facts and hopes. ClinCancer Res. 2019;25(15):4592–602.

5. Cancer Genome Atlas Research Network. Comprehensive genomiccharacterization of squamous cell lung cancers. [published erratum appearsErratum in: Nature 2012;491(7423):288]. Nature. 2012;489(7417):519–25.

6. Hirsch FR, Kerr KM, Bunn PA Jr, Kim ES, Obasaju C, Pérol M, et al. Molecularand immune biomarker testing in squamous-cell lung Cancer: effect ofcurrent and future therapies and technologies. Clin Lung Cancer. 2018;19(4):331–9.

7. Sands JM, Nguyen T, Shivdasani P, Sacher AG, Cheng ML, Alden RS, et al.Next-generation sequencing informs diagnosis and identifies unexpectedtherapeutic targets in lung squamous cell carcinomas. Lung Cancer. 2020;140:35–41.

8. Schwaederle M, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Squamousness:next-generation sequencing reveals shared molecular features acrosssquamous tumor types. Cell Cycle. 2015;14(14):2355–61.

9. Friedlaender A, Banna G, Malapelle U, Pisapia P, Addeo A. Next generationsequencing and genetic alterations in squamous cell lung carcinoma:where are we today? Front Oncol. 2019;9:166.

10. Otaka Y, Rokudai S, Kaira K, Fujieda M, Horikoshi I, Iwakawa-Kawabata R,et al. STXBP4 drives tumor growth and is associated with poor prognosisthrough PDGF receptor signaling in lung squamous cell carcinoma. ClinCancer Res. 2017;23(13):3442–52.

11. Rokudai S, Li Y, Otaka Y, Fujieda M, Owens DM, Christiano AM, et al. STXBP4regulates APC/C-mediated p63 turnover and drives squamous cellcarcinogenesis. Proc Natl Acad Sci U S A. 2018;115(21):E4806–14.

12. Li Y, Peart MJ, Prives C. Stxbp4 regulates DeltaNp63 stability by suppressionof RACK1-dependent degradation. Mol Cell Biol. 2009;29(14):3953–63.

13. Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63in squamous cell carcinoma: defining the oncogenic routes affectingepigenetic landscape and tumour microenvironment. Mol Oncol. 2019;13(5):981–1001.

14. Bao P, Yokobori T, Altan B, Iijima M, Azuma Y, Onozato R, et al. High STMN1expression is associated with Cancer progression and chemo-resistance inlung squamous cell carcinoma. Ann Surg Oncol. 2017;24(13):4017–24.

15. Mao Q, Chen Z, Wang K, Xu R, Lu H, He X. Prognostic role of high Stathmin1 expression in patients with solid tumors: evidence from a meta-analysis.Cell Physiol Biochem. 2018;50(1):66–78.

16. Jun HJ, Appleman VA, Wu HJ, Rose CM, Pineda JJ, Yeo AT, et al. A PDGFRαdriven mouse model of glioblastoma reveals a stathmin1-mediatedmechanism of sensitivity to vinblastine. Nat Commun. 2018;9(1):3116.

17. Bai T, Yokobori T, Altan B, Ide M, Mochiki E, Yanai M, et al. High STMN1 levelis associated with chemo-resistance and poor prognosis in gastric cancerpatients. Br J Cancer. 2017;116(9):1177–85.

18. Brierley J, Gospodarowicz MK, Wittekind C. TNM classification of malignanttumours. Eighth ed. Oxford, UK. Hoboken: Wiley; 2017.

19. Goodman AM, Kato S, Chattopadhyay R, Okamura R, Saunders IM,Montesion M, et al. Phenotypic and genomic determinants ofimmunotherapy response associated with Squamousness. Cancer ImmunolRes. 2019;7(6):866–73.

20. Tanaka I, Sato M, Kato T, Goto D, Kakumu T, Miyazawa A, et al. eIF2β, asubunit of translation-initiation factor EIF2, is a potential therapeutic targetfor non-small cell lung cancer. Cancer Sci. 2018;109(6):1843–52.

21. Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic,transcriptional and post-translational regulation of the programmed deathprotein ligand 1 in cancer: biology and clinical correlations. Oncogene.2018;37(34):4639–61.

22. Shen X, Zhang L, Li J, Li Y, Wang Y, Xu ZX. Recent findings in the regulation ofprogrammed death ligand 1 expression. Front Immunol. 2019;14(10):1337..

23. Suresh S, Chen B, Zhu J, Golden RJ, Lu C, Evers BM, et al. eIF5B drivesintegrated stress response-dependent translation of PD-L1 in lung cancer.Nature Cancer. 2020;1:533–45.

24. Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F, et al. PARP1 suppresses thetranscription of PD-L1 by poly (ADP-Ribosyl) ating STAT3. Cancer ImmunolRes. 2019;7(1):136–49.

25. Kathuria H, Millien G, McNally L, Gower AC, Tagne JB, Cao Y, et al. NKX2-1-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limitshuman lung carcinoma cell migration. Sci Rep. 2018;8(1):14418.

26. Suda K, Rozeboom L, Rivard CJ, Yu H, Ellison K, Melnick MAC, et al. Therapyinduced E-cadherin downregulation alters expression of programmed deathligand-1 in lung cancer cells. Lung Cancer. 2017;109:1–8.

27. Ratovitski EA. Tumor protein p63/microRNA network in epithelial Cancercells. Curr Genomics. 2013;14(7):441–52.

28. Wan J, Ling X, Peng B, Ding G. miR-142-5p regulates CD4+ T cells in humannon-small cell lung cancer through PD-L1 expression via the PTEN pathway.Oncol Rep. 2018;40(1):272–82.

29. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al.Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-basedBilguun et al. BMC Cancer (2020) 20:935 Page 13 of 14chemotherapy for advanced non-small-cell lung Cancer with PD-L1 tumorproportion score of 50% or greater. J Clin Oncol. 2019;37(7):537–46.

30. Li M, Yang J, Zhou W, Ren Y, Wang X, Chen H, et al. Activation of an AKT/FOXM1/STMN1 pathway drives resistance to tyrosine kinase inhibitors inlung cancer. Br J Cancer. 2017;117(7):974–83.

参考文献をもっと見る