リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ハスモンヨトウ防除を目指した高い病原力及び定着能力を有する昆虫寄生菌の選抜に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ハスモンヨトウ防除を目指した高い病原力及び定着能力を有する昆虫寄生菌の選抜に関する研究

ムルエ ギルメイ ゲブレスラシエ MULUE GIRMAY GEBRESLASIE 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Studies on Selection of Entomopathogenic Fungi
with High Virulence and Field Persistence for
Controlling Common Cutworm, Spodoptera litura
ムルエ ギルメイ ゲブレスラシエ

https://hdl.handle.net/2324/7157389
出版情報:Kyushu University, 2023, 博士(農学), 課程博士
バージョン:
権利関係:

Name

: ムルエ ギルメイ ゲブレスラシエ (Mulue Girmay Gebreslasie)

Title

: Studies on Selection of Entomopathogenic Fungi with High Virulence and
Field Persistence for Controlling Common Cutworm, Spodoptera litura
(ハスモンヨトウ防除を目指した高い病原力及び定着能力を有する昆虫寄生菌の
選抜に関する研究)

Category:Kou

Thesis Summary
The current research was laboratory and field-based experiments with three genera of
entomopathogenic fungi Beauveria, Metarhizium and Cordyceps of which different geographic
locations and source of isolations. Entomopathogenic fungal strains belonging to those genera are
among the known components of biological weapons in integrated pest management programs.
They are naturally safe and eco-friendly biological agents. Their potential of host specificity and
ease of handling make them options to substitute synthetic pesticides in pest control. The general
outlines of the research was organized in three sections, (1) laboratory based bioassay with 16
entomopathogenic fungal strains against the last instar larvae and pupae of Spodoptera litura, (2)
screening of 32 fungal strains for in vitro heat tolerance at 45oC in 2 h and 4 h exposure period, (3)
field persistence assay of selected fungal strains (5 strains) with variable performance of
thermotolerance under laboratory for field persistence from pot soils and cucumber leaves in hot
and cold season.
The efficiency of fungal stains for controlling agricultural, household, vector insects and dairy
farm pests were proved through various post research studies, However, they are sensitive and
unstable under field condition. Evaluations on its fitness to withstand a given environmental
conditions such as temperature, UV radiations and relative humidity, are important to select strains
with better biocontrol efficacy in fields, because these factors have detrimental effect and restricts
the use of entomopathogenic fungi in field. Hence screening of the fungal strains done to check the
synchrony in potential of fungal strains for in vitro heat tolerance and field persistence. All assayed
fungal strains come up with certain degree of heat tolerance, where significant variation observed
among fungal genera and strains of same species.
Results of in vitro heat tolerance assay clarified that colony forming unit counts of fungal strains
were seen with the potential tolerance ranging from 0–100% and fungal conidia get distorted with
the lengthy periods of heat exposure at the selected temperature level (45oC). The exposure for 4 h
at 45oC referred as lethal death point for B. bassiana OMNS150429-2, B. brongniartii TNO6, C.
fumosorosea BPS2, C. javanica Czy-LP and M. pingshaense MS3. A higher dominance in
thermotolerance was observed with Metarhizium strains in extended heat exposure, while C.
javanica Czy-LP, C. fumosorosea BPS2, B. brongniartii TNO6 and M. pingshaense MS3 remained

highly susceptible.
Obviously, there are several factors affecting persistence potential of entomopathogenic fungal
strains under field conditions like the inherent capacity of the fungal strain, soil type, culture media
and others. However, this study was handled regardless of the biotic factors. It focused only
temperature to define the relationship between in vitro heat tolerance and field persistence. Field
observation demonstrated that the three Metarhizium species, M. pingshaense F2685, M.
pingshaense MS2 and M. brunneum F709 showed significant difference among the assayed strains
with survival of CFUs at 7 days and 28 days post inoculations in both hot and cold season trials.
Whereas strains of B. brongniartii TNO6 and C. javanica Czy-LP were vulnerable under field
condition. It detailed that direct relationship between the two parameters and concluded in vitro heat
assay could be used in selection of field persistent fungal strains for hot season applications.
Laboratory based virulence assessment of 16 fungal strains against lepidopteran pest was
carried out with the reference to insect pest, S. litura. It is one of the devastating pests worldwide.
Last instar larvae and pupae were used for bioassays at the concentration of 1 x 108 conidia/mL.
Data on mortality, percent of mycotized larvae and pupae, and adult emergence were recorded.
Fungal strains exhibited varying levels of virulence regarding the treated life stages of the target
pest with up to 100% mortality at 10 days post inoculations. Strains of M. rileyi Nr4, M. pingshaense
MS1, M. brunneum ARSEF 3294 and M. pingshaense ARSEF 8736 with the uppermost average
mortality for last instar larvae, however, their virulence against the pupae was comparatively lower.
The higher pupal susceptibility was observed with the strains of B. brongniartii TNO6, C. javanica
Czy-LP, M. brunneum F709, and M. pingshaense MS2. Those strains scored virulence ≥90% to
pupae and ≥85% to last instar larvae and seem composite strains and could be intensively
investigated and developed as potential mycopesticides in integrated pest management programs
against S. litura. In addition, the reference/commercial B. bassiana GHA accounted among the
least efficient strains during the lab bioassays.

この論文で使われている画像

参考文献

Abdullah, A., Ullah M.I., Raza A.M., Arshad M., and Afzal M. 2019. Host plant selection

affects biological parameters in armyworm, Spodoptera litura (Lepidoptera: Noctuidae).

Pakistan Journal of Zoology, 51(6): 2117–2123.

Ahmad, A., Butt N., Idrees M. A., Hassan N., Raheel Saleem M., Umair Ali M., Ramzan M.,

and Asnan A. 2022. Toxicity of four new chemistry insecticides against Spodoptera litura

(Noctuidae: Lepidoptera) under controlled laboratory conditions. Journal of Bioresource

Management, 9 (2):40–45.

Ahmad, J.N., Mushtaq R., Ahmad S.J.N., Malik M.A., Manzoor M., Tahir M., Aslam Z.,

Maqsood S., Ahuja I., and Bones A.M. 2020. Sub-lethal dose responses of native

polyhydroviruses and spinosad for economical and sustainable management of Spodoptera

litura in Pakistan. Pakistan Journal of Zoology, 52(3): 989–999.

Ahmad, J.N., Mushtaq R., Ahmad S.J.N., Maqsood S., Ahuja I., and Bones A.M. 2018.

Molecular identification and pathological characteristics of NPV isolated from Spodoptera

litura (Fabricius) in Pakistan. Pakistan Journal of Zoology, 50(6): 2229–2237.

Ahmad, M., Ghaffar A., and Rafiq M. 2013. Host plants of leaf worm, Spodeptera litura

(Fabricius) (Lepidoptera: noctuidae) in Pakistan. Asian Journal Agricultural Biology, 1(1):

23–28.

Alfiky, A. 2022. Screening and identification of indigenous entomopathogenic fungal isolates

from agricultural farmland soils in Nile delta, Egypt. Journal of Fungi, 8, 54.

DOI:10.3390/jof8010054

Anand R., Prasad B., and Tiwary B.N. 2009. Relative susceptibility of Spodoptera litura

pupae to selected entomopathogenic fungi. BioControl, 54: 85–92.

Anderson,

R.D.,

2011.Comparative

Bell A.S.,

growth

Blanford

kinetics

and

S.,

Paaijmans K.P.,

virulence

of

and

Thomas M.B.

four different

isolates

of

entomopathogenic fungi in the house fly (Musca domestica L.). Journal of Invertebrate

Pathology, 107(3):179–184.

63

Asi, M. R, Bashir M. H, Afzal M., Zia K., and Akram M. 2013. Potential of

entomopathogenic fungi for biocontrol of Spodoptera litura Fabricius (lepidoptera:

noctuidae). Journal of Animal and Plant Sciences, 23(3): 913–918.

Chang, J.C., Wu S.S., Liu Y.C., Yang Y.H., Tsai Y.F., Li Y.H., Tseng C.T., Tang L.C., and

Nai Y.S. 2021. Construction and selection of an entomopathogenic fungal library from soil

samples for controlling Spodeptera litura. Frontiers in Sustainable Food Systems, 5: 596316.

DOI:10.3389/fsufs.2021.596316

Clifton, E.H., Jaronski S.T., Hodgson E.W., and Gassmann A.J. 2015. Abundance of soilborne entomopathogenic fungi in organic and conventional fields in the midwestern USA

with an emphasis on the effect of herbicides and fungicides on fungal persistence. PLoS One,

10(7): e0133613. DOI:10.1371/journal.pone.0133613

Deepak, Yadav S.P., Yadav S., and Puneet. 2020. Biology studies of tobacco caterpillar,

Spodoptera litura Fabricius on castor (Ricinus communis L.). Journal of Entomology and

Zoology Studies, 8(2): 1163–1168.

Dhar, S., Jindal V., Jariyal M., and Gupta V. K. 2019. Molecular characterization of new

isolates of the entomopathogenic fungus Beauveria bassiana and their efficacy against the

tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egyptian Journal

of Biological Pest Control, 29(8): 1–9.

Digvijay, S., Tanveer K. R., and Joginder S. 2017. Entomopathogenic fungi: an effective

biocontrol agent for management of insect populations naturally. Journal of Pharmaceutical

Science and Research, 9(6): 830–839.

Fand, B.B., Sul N.T., Bal S.K., and Minhas P.S. 2015. Temperature impacts the development

and survival of common cutworm (Spodoptera litura): simulation and visualization of

potential population growth in India under warmer temperatures through life cycle modelling

and spatial mapping. PLoS One, 10(4): e0124682. DOI:10.1371/journal.pone.0124682

Fattah, A., Sjam S., Daud I.D., and Dewi V.S. 2018. The relationship of the population

density of larvae Spodoptera litura with the leaf damage and decrease of seed yield for

soybean, Indonesia. Journal of Agricultural Science and Technology, 8: 212–219.

64

Fattah, A., Sjam S., Daud I.D., Dewi V.S., and Ilyas A. 2020. Impact of armyworm

Spodoptera litura (Lepidoptera: Noctuidae) attack: Damage and loss of yield of three

soybean varieties in south Sulawesi, Indonesia. Journal of Crop Protection, 9(3): 483–495.

Fernandes, E.K.K., Rangel D.E.N., Moraes A.M.L., Bittencourt V.R.E.P., and Roberts D.W.

2008. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria.

Journal of Invertebrate Pathology, 98(1): 69–78.

Gomez, D.R.S., Delpin K.E., MoscardI F., and Farias J.R.B. 2001. Natural Occurrence of the

entomopathogenic fungi Metarhizium, Beauveria and Paecilomyces in soybean under till and

no-till cultivation systems. Neotropical Entomology, 30(3): 407–410.

Grewal, G.K., Joshi N., and Suneja Y. 2021. Pathogenicity of Metarhizium rileyi (Farlow)

Kepler, S.A. Rehner and Humber isolates against Spodoptera litura (Fabricius) and their

extracellular enzymatic activities. Egyptian Journal of Biological Pest Control, 31: 59.

DOI:10.1186/s41938-01-00407-4

Guinossi, H.D.M., Moscardi F., Oliveira M.C.N.D., and Gomez D.R.S. 2012. Spatial

dispersal of Metarhizium anisopliae and Beauveria bassiana in soybean fields. Tropical Plant

Pathology, 37(1): 44–49.

Gurmeet, K.B., and Sanehdeep K.2013. Phenoloxidase activity in haemolymph of Spodeptera

litura (Fabricius) mediating immune response challenge with entomopathogenic fungus,

Beauveria bassiana (Balsamo) Vuillemin. Journal of Entomology and Zoology Studies, 1(6):

118–123.

Herlinda S., Efendi R.A., Suharjo R., Hasbi, Setiawan A., Elfita, and Verawaty M. 2020.

New emerging entomopathogenic fungi isolated from soil in south Sumatra (Indonesia) and

their filtrate and conidial insecticidal activity against Spodoptera litura. Biodiversitas, 21(11):

5102–5113.

Herlinda S., Octariati N., Suwandi S., and Hasbi. 2020. Exploring entomopathogenic fungi

from south Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize

pest, Spodoptera frugiperda. Biodiversitas, 21(7): 2955–2965.

Herlinda, S., Oktareni S.S., Suparman, Anggraini E., Elfita, Setiawan A., Verawaty M.,

Hasbi, and Lakitan B. 2019. Effect of application of UV irradiated Beauveria bassiana and

Metarhizium anisopliae on larval weight and mortality of Spodoptera litura. Advances in

65

Biological Sciences Research, 8: 64–70. International Conference and the 10th Congress of

the Entomological Society of Indonesia (ICCESI).

Idress, A., Khan M.S., Jahangir K., Khan I., Mohammad D., Khpalwak W., Aziz H., Sardar

M.U., Qazi I., and Jamil M. 2022. Effectiveness of selected entomopathogenic fungi against

the tobacco caterpillar, Spodoptera Litura (Fabricius) (Lepidoptera: Noctuidae). Pakistan

Journal of Medical and Health Sciences, 16(1):507–510.

Ivase, T.J.P., Nyakuma B.B., Ogenyi B.U., Balogun A.D., and Hassan M.N. 2017. Current

status, challenges, and prospects of biopesticide utilization in Nigeria. Agriculture and

Environment, 9: 95−106.

Kachhawa, D. 2017. Microorganisms as a biopesticides. Journal of Entomology and Zoology

Studies, 5(3): 468–473.

Kim, J.S., Kassa A., Skinner M., Hata T., and Parker B.L. 2011. Production of thermotolerant

entomopathogenic fungal conidia on millet grain. Journal of Industrial Microbial

Biotechnology, 38: 697–704.

Kim, S., Kim J.C., Lee S.J., Lee M.R., Park S.E., Li D., Baek S., Shin T.Y., Gasmi L., and

Kim J.S. 2020. Soil application of Metarhizium anisopliae JEF-314 granules to control,

flower chafer beetle, Protaetia brevitarsis (seulensis). Microbiology, 48(2): 139–147.

Li, J., Guo Q., Lin M., Jiang L., Ye J., Chen D., Li Z., Dai J., and Han S. 2016. Evaluation of

a new entomopathogenic strain of Beauveria bassiana and a new field delivery method

against Solenopsis invicta. PLoS One, 11(6): e0158325. DOI:10.1371/journal.pone.0158325

Lin, T., Chena X., Lid B., Chend P., Guob M., Zhoua X., Zhonga S., and Cheng X. 2019.

Geographical origin identification of Spodeptera litura (Lepidoptera: noctuidae) based on the

trace elements profiles using tobacco as intermedium planted on soils from five different

regions. Microchemical Journal, 146: 49–55.

Mannino, M.C., Bonnet C.H., Colo B.D., and Pedrini N. 2019. A review, Is the insect cuticle

the only entry gate for fungal infection? Insights into alternative modes of action of

entomopathogenic fungi. Journal of Fungi, 5(2): 33. DOI:10.3390/jof5020033

66

Maqsood, S., Afzal M., Aqueel M.A., Raza A.M., Wakil W., and Babar M.H. 2017. Efficacy

of nuclear polyhedrosis virus and flubendiamide alone and in combination against

Spodoptera litura F. Pakistan Journal of Zoology, 49(5): 1783–1788.

Mesquita, E., Marciano A.F., Corval A.R.C., Fiorotti J., Correa T.A., Quinelato S.,

Bittencourt V.R.E.P., and Golo P.S. 2020.

Efficacy of a native isolate of the

entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semi

field conditions. BioControl, 65: 353–362.

Mohamed A. G., and Mohamed S. K. 2015. Toxicological effects of organophosphates

pesticides. International Journal of Environmental Monitoring and Analysis, 3(4): 218–220.

Monobrullah, M., and Shankar U. 2008. Sub-lethal effects of SpltMNPV infection on

developmental stages of Spodoptera litura (Lepidoptera: Noctuidae). Biocontrol Science and

Technology,18(4): 431–437.

Mora, M.A.E., Castilho A.M.C., and Fraga M.E. 2017. Classification and infection

mechanism of entomopathogenic fungi. Arquivos do Instituto Biologico, 84: e0552015.

DOI:10.1590/1808-1657000552015

Moraga E.Q., Cortes J.A.N., Maranhao E.A.A., Urquiza A.O., and Alvarez C.S. 2007.

Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and

cultivated soils. Mycological Research, 111: 947–966.

Narvekar, P.F, Mehendale S.K, Karmarkar M.S, Desai S.D., and Golvankar G.M. 2018.

Effect of Bt on third instar larvae against Spodoptera litura (Fab.) on different host plants

under laboratory condition. International Journal of Chemical Studies, 6(6): 899–901.

Nath, A. 2020. Role of biopesticides in attaining sustainable agriculture. Agriculture and

Food: E-newspaper, 2(11): 606–609, Pantnagar, India.

Nathan, S.S., and Kalaivani K. 2005. Efficacy of nucleopolyhedrovirus and azadirachtin on

Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biological Control, 34: 93–98.

Nathan,

S.S.,

and

Kalaivani K.

2006.

Combined

effects of

azadirachtin

and

nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae)

larvae. Biological Control, 39: 96–104.

67

Natikar, P.K., and Balikai R.A. 2015. Tobacco caterpillar, Spodoptera litura (fabricius):

toxicity, ovicidal action, oviposition deterrent activity, ovipositional preference, and its

management, a review article. Biochemical and Cellular Archives, 15(2): 383–389.

Neylon, J., Fuller J.N., Poel C., Church J.E., and Dworkin S. 2022. A Review,

organophosphate insecticide toxicity in neural development, cognition, behaviour and

degeneration: Insights from zebrafish. Journal of Developmental Biology, 10: 49.

DOI:10.3390/jdb10040049

Noma T, Garcia M.C., Brewer M., Landis J., Gooch A., and Philip M. 2010. Oriental

leafworm (Spodoptera litura). Michigan State University’s invasive species factsheets, 1–2.

Oliveira, D.G.P.D., Lopesb R.B., Rezendec J.M., and Jr I.D. 2018. Increased tolerance of

Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oilbased formulations. Journal of Invertebrate Pathology, 151: 151–157.

Pacheco, F.L.G., Santillana E.J.L., Huerta M.E.A., Rodríguez R.P., and Zapata I.Q. 2021.

Isolation of native strains of entomopathogenic fungi from agricultural soils of northeastern

Mexico and their virulence on Spodoptera exigua (Lepidoptera: Noctuidae). Florida

Entomologist: BioOne Complete, 104(4): 245–252.

Patel, R.M., Sharma P., and Sharma A.N. 2020. Weather based prediction models for

forewarning tobacco caterpillar, Spodoptera Litura (Fabricius) larval population in soybean.

Journal of the Indian Society of Agricultural Statistics, 74(2): 129–135.

Petlamul, W., and Prasertsan P. 2012. Evaluation of strains of Metarhizium anisopliae and

Beauveria bassiana against Spodoptera litura on basis of their virulence, germination rate,

conidia production, radial growth, and enzyme activity. Mycobiology, 40(2):111–116.

Pratiwi, K., Trisyono Y.A., and Martono E. 2016. The effect of Bacillus thuringiensis toxin

cry1a.105 and cry2ab2 on the survival of the non-target pest, Spodoptera litura. Journal

Perlindungan Tanaman Indonesia, 20(1): 7–14.

Qayyum, M.A., Bilal H., Ullah U.N., Ali H., Raza H., and Wajid M. 2021. Factors affecting

the epizootics of entomopathogenic fungi-a review. Journal Bioresource Management, 8(4):

78–85.

68

Ramaiah, M., and Maheswari T.U. 2018. Biology studies of tobacco caterpillar, Spodoptera

litura Fabricius. Journal of Entomology and Zoology Studies, 6(5): 2284–2289.

Rana, A., Tyagi M., and Sharma N. 2019. Impact of chemical pesticides vs. biopesticides on

human health and environment. IJCIRAS, 2(7): 45–51.

Rangel, D.E.N., Braga G.U.L., Anderson A.J., and Roberts D.W. 2005. Variability in

conidial thermotolerance of Metarhizium anisopliae isolates from divergent geographic

origins. Journal of Invertebrate Pathology, 88: 116–125.

Reinbacher, L., Bacher S., Knecht F., Schweizer C., Sostizzo T., and Grabenweger G. 2021.

Preventive field application of Metarhizium brunneum in cover crops for wireworm control.

Crop Protection 150: 105811. DOI:10.1016/j.cropro.2021.105811

Sahayaraj, K., and Namachivayam S.K.R. 2011. Field evaluation of three entomopathogenic

fungi on groundnut pests. Tropicultura, 29(3): 143–147.

Saheb, Y.P., Manjula K., Devaki K., Lakshmi R.S.J., Reddy B.R., and Venkateswarlu1 N.C.

2021. Evaluation of Metarhizium (Nomuraea) rileyi (Farlow) Samson isolates against

Spodoptera litura F. under in vitro conditions. Journal of Biological Control, 35(1): 33–36.

Sahu, B., Pachori R., Navya R.N., and Patidar S. 2020. Extent of damage by Spodoptera

litura on cabbage. Journal of Entomology and Zoology Studies, 8(3): 1153–1156.

Saleem, M., Hussain D., Ghouse G., Abbas M., and Fisher S.W. 2016. Monitoring of

insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of

Punjab, Pakistan to conventional and new chemistry insecticides. Crop Protection, 79: 177–

184.

Samada, L.H., and Tambunan U.S.F. 2020. Biopesticides as promising alternatives to

chemical pesticides: A review of their current and future status. Journal of Biological

Sciences, 20 (2): 66–76.

Samuels, R.I., Paula A.R., Carolino A.T., Gomes S.A., Morais C.O.P., Cypriano M.B.C.,

Silva L.E.I., Ribeiro A., Santos J.W.A.B., and Silva C.P. 2016. Entomopathogenic

organisms: conceptual advances and real-world applications for mosquito biological control.

Open Access Insect Physiology, 6: 25–31.

69

Sarwar G., Maan N.A., Ayub M.A., Shahid M.R., Malik M.A., and Farooq M. 2021.

Evaluation of indigenous the nucleopolyhedrovirus (NPV) of Spodoptera litura (Fabricius)

(Lepidoptera: Noctuidae) in combination with chlorantraniliprole against Spodoptera species.

Egyptian Journal of Biological Pest Control, 31: 58. DOI:10.1186/s41938-021-00403-8

Selvaraj, S., Adiroubane D., Ramesh V., and Narayanan A.L. 2010. Impact of ecological

factors on incidence and development of tobacco cut worm, Spodoptera litura (Fabricius) on

cotton. Journal of Biopesticides, 3(1): 43–46.

Souza, T.D.D., Fernandes F.O., Sanches A.C., Nascimento J.D., Pinto A.A., and Polanczyk

R.A. 2022. Relation between Helicoverpa armigera (Hubner) (Lepidoptera/Noctuidae)

mortality and entomopathogenic fungi persistence in soybean leaflets. Egyptian Journal of

Biological Pest Control, 32: 10. DOI:10.1186/s41938-022-00508-8

Swiergiel, W., Meyling N.V., Porcel M., and Ramert B. 2016. Soil application of Beauveria

bassiana

(GHA)

against

apple

sawfly,

Hoplocampa

testudinea

(Hymenoptera:

Tenthredinidae): field mortality and fungal persistence. Insect Science, 23: 854–868.

Tkaczuk, C., Krol A., Safaryan A.M., and Nicewicz L. 2014. The occurrence of

entomopathogenic fungi in soils from fields cultivated in a conventional and organic system.

Journal of Ecological Engineering; 15(4): 137–144.

Tong, H., Su Q., Zhou X., and Bai L. 2013 Field resistance of Spodoptera litura

(Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer

chemistry insecticides in Hunan, China. Journal of Pest Science, 86: 599–609.

Trang, T.T.K., and Chaudhari S. 2002. Bioassay of nuclear polyhedrosis virus (npv) and in

combination with insecticide on Spodoptera litura (Fab). Omonrice, 10: 45–53.

Tuan, S.J., Li N.J., Yeh C.C., Tang L.C., and Chi H. 2014. Effects of green manure cover

crops on Spodoptera litura (Lepidoptera: Noctuidae) populations. Journal of Economic

Entomology, 107(3): 897–905.

Ullah, M.I, Altaf N., Afzal M., Arshad M., Mehmood N., Riaz M., Majeed S., Ali S., and

Abdullah A. 2019. Effects of entomopathogenic fungi on the biology of Spodeptera litura

(Lepidoptera: Noctuidae) and its reduviid predator, Rhynocoris marginatus (Heteroptera:

Reduviidae). International Journal of Insect Science, 11: 1–7.

70

Ullah, M.I., Arshad M., Afzal M., Khalid S., Saleem M, Mustafa I., Iftikhar Y., Ochoa J.M.,

and Foster J.E. 2016. Incidence of Spodoptera litura (Lepidoptera: Noctuidae) and its feeding

potential on various citrus (Sapindales: Rutaceae) cultivars in the Sargodha Region of

Pakistan. BioOne Complete, Florida Entomological Society, 99(2): 192–195.

Vashisth, S., Chandel Y.S., and Kumar S. 2012. Biology and damage potential of Spodoptera

litura fabricius on some important greenhouse crops. Journal of Insect Science, 25(2): 150–

154.

Vega, F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M.,

Maniania N. K., Monzon A., Ownley B.H., Pell J.K., Rangel D.E.N., and Roy H.E. 2009.

Mini-review fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2:

149–159.

Wakil, W., Ghazanfar M.U., and Yasin M. 2014. Naturally occurring entomopathogenic

fungi infecting stored grain insect species in Punjab, Pakistan. Journal of Insect Science, 14:

182. DOI:10.1093/jisesa/ieu044

Woolley, V.C., Teakle G.R., Prince G., Moor C.H.D., and Chandler D. 2020. Cordycepin, a

metabolite of Cordyceps militaris, reduces immune-related gene expression in insects.

Journal of Invertebrate Pathology, 177: 107480. DOI:10.1016/j.jip.2020.107480

Wu, S., Toews M.D., Hofman C.O., Behle R.W., Simmons A.M., and Ilan D.I.S. 2020.

Environmental tolerance of entomopathogenic fungi: a new strain of Cordyceps javanica

isolated from a whitefly epizootic versus commercial fungal strains. Insects, 11(10): 711.

DOI:10.3390/insects11100711

Xue, M., Pang Y.H., Wang H.T., Li Q.L., and Liu T.X. 2010. Effects of four host plants on

biology and food utilization of the cutworm, Spodoptera litura. Journal of Insect Science, 10:

22. DOI:10.1673/031.010.2201

Yang, Y., Qin C.S., Chen Y.M., Zhang G.Y., Dong L.H., and Wan S.Q. 2019. Persistence of

Metarhizium sp. (Hypocreales: Clavicipitaceae) and Beauveria bassiana (Hypocreales:

Clavicipitaceae) in tobacco soils and potential as biocontrol agents of Spodoptera litura

(Lepidoptera: Noctuidae). Environmental Entomology, 48(1): 147–155.

Yasin, M., Qazi M.S., Wakil W., and Qayyum M.A. 2020. Evaluation of nuclear

polyhedrosis virus (NPV) and emamectin benzoate against Spodoptera litura (F.)

71

(Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 30: 88.

DOI:10.1186/s41938-020-00271-8

Yu, J.S., Lee S.J., Shin T.Y., Kim W.J., and Kim J.S. 2020. Enhanced thermotolerance of

entomopathogenic Beauveria bassiana and Metarhizium anisopliae JEF-isolates by substrate

modification. International Journal of Industrial Entomology, 41(2): 28–35.

72

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る