リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Valorization of Lignin and Its Derivatives Using Yeast」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Valorization of Lignin and Its Derivatives Using Yeast

Putra, Filemon J. Kahar, Prihardi Kondo, Akihiko Ogino, Chiaki 神戸大学

2022.10

概要

As the third most plentiful biopolymer after other lignocellulosic derivates such as cellulose and hemicellulose, lignin carries abundant potential as a substitute for petroleum-based products. However, the efficient, practical, value-added product valorization of lignin remains quite challenging. Although several studies have reviewed the valorization of lignin by microorganisms, this present review covers recent studies on the valorization of lignin by employing yeast to obtain products such as single-cell oils (SCOs), enzymes, and other chemical compounds. The use of yeasts has been found to be suitable for the biological conversion of lignin and might provide new insights for future research to develop a yeast strain for lignin to produce other valuable chemical compounds.

参考文献

1. Singh, N.; Singhania, R.R.; Nigam, P.S.; Dong, C.-D.; Patel, A.K.; Puri, M. Global Status of Lignocellulosic Biorefinery: Challenges and Perspectives. Bioresour. Technol. 2022, 344, 126415. [CrossRef] [PubMed]

2. Matsushita, Y. Conversion of Technical Lignins to Functional Materials with Retained Polymeric Properties. J. Wood Sci. 2015, 61, 230–250. [CrossRef]

3. Sivagurunathan, P.; Raj, T.; Mohanta, C.S.; Semwal, S.; Satlewal, A.; Gupta, R.P.; Puri, S.K.; Ramakumar, S.S.V.; Kumar, R. 2G Waste Lignin to Fuel and High Value-Added Chemicals: Approaches, Challenges and Future Outlook for Sustainable Development. Chemosphere 2021, 268, 129326. [CrossRef] [PubMed]

4. Chauhan, P.S.; Agrawal, R.; Satlewal, A.; Kumar, R.; Gupta, R.P.; Ramakumar, S.S.V. Next Generation Applications of Lignin Derived Commodity Products, Their Life Cycle, Techno-Economics and Societal Analysis. Int. J. Biol. Macromol. 2022, 197, 179–200. [CrossRef] [PubMed]

5. Amore, A.; Ciesielski, P.N.; Lin, C.-Y.; Salvachúa, D.; Sànchez i Nogué, V. Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges. Aust. J. Chem. 2016, 69, 1201. [CrossRef]

6. Poveda-Giraldo, J.A.; Solarte-Toro, J.C.; Cardona Alzate, C.A. The Potential Use of Lignin as a Platform Product in Biorefineries: A Review. Renew Sustain. Energy Rev. 2021, 138, 110688. [CrossRef]

7. Zhang, C. Lignocellulosic Ethanol: Technology and Economics. In Alcohol Fuels-Current Technologies and Future Prospect; Yun, Y., Ed.; IntechOpen: London, UK, 2019. [CrossRef]

8. Nguyen, L.T.; Phan, D.-P.; Sarwar, A.; Tran, M.H.; Lee, O.K.; Lee, E.Y. Valorization of Industrial Lignin to Value-Added Chemicals by Chemical Depolymerization and Biological Conversion. Ind. Crops Prod. 2021, 161, 113219. [CrossRef]

9. Chatel, G.; Rogers, R.D. Review: Oxidation of Lignin Using Ionic Liquids—An Innovative Strategy to Produce Renewable Chemicals. ACS Sustain. Chem. Eng. 2014, 2, 322–339. [CrossRef]

10. De Gonzalo, G.; Colpa, D.I.; Habib, M.H.M.; Fraaije, M.W. Bacterial Enzymes Involved in Lignin Degradation. J. Biotechnol. 2016, 236, 110–119. [CrossRef]

11. Schuetz, M.; Benske, A.; Smith, R.A.; Watanabe, Y.; Tobimatsu, Y.; Ralph, J.; Demura, T.; Ellis, B.; Samuels, A.L. Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem. Plant. Physiol. 2014, 166, 798–807. [CrossRef] [PubMed]

12. Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [CrossRef]

13. Galbe, M.; Wallberg, O. Pretreatment for Biorefineries: A Review of Common Methods for Efficient Utilisation of Lignocellulosic Materials. Biotechnol. Biofuels 2019, 12, 294. [CrossRef]

14. Aftab, M.N.; Iqbal, I.; Riaz, F.; Karadag, A.; Tabatabaei, M. Different Pretreatment Methods of Lignocellulosic Biomass for Use in Biofuel Production. In Biomass for Bioenergy-Recent Trends and Future Challenges; Abomohra, A.E., Ed.; IntechOpen: London, UK, 2019. [CrossRef]

15. Zhou, N.; Thilakarathna, W.P.D.W.; He, Q.S.; Rupasinghe, H.P.V. A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects. Front. Energy Res. 2022, 9, 758744. [CrossRef]

16. Xu, C.; Ferdosian, F. Conversion of Lignin into Bio-Based Chemicals and Materials; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-54957-5.

17. Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products and Their Environmental Impact. Ind. Crops Prod. 2019, 139, 111526. [CrossRef]

18. Grossman, A.; Vermerris, W. Lignin-Based Polymers and Nanomaterials. Curr. Opin. Biotechnol. 2019, 56, 112–120. [CrossRef]

19. Taherzadeh, M.J.; Eklund, R.; Gustafsson, L.; Niklasson, C.; Lidén, G. Characterization and Fermentation of Dilute-Acid Hydrolyzates from Wood. Ind. Eng. Chem. Res. 1997, 36, 4659–4665. [CrossRef]

20. Di Blasi, C.; Branca, C.; Galgano, A. Biomass Screening for the Production of Furfural via Thermal Decomposition. Ind. Eng. Chem. Res. 2010, 49, 2658–2671. [CrossRef]

21. Wang, S.; Lin, H.; Zhang, L.; Dai, G.; Zhao, Y.; Wang, X.; Ru, B. Structural Characterization and Pyrolysis Behavior of Cellulose and Hemicellulose Isolated from Softwood Pinus armandii Franch. Energy Fuels 2016, 30, 5721–5728. [CrossRef]

22. Rabemanolontsoa, H.; Saka, S. Comparative Study on Chemical Composition of Various Biomass Species. RSC Adv. 2013, 3, 3946. [CrossRef]

23. Demirbas¸, A. Thermochemical Conversion of Biomass to Liquid Products in the Aqueous Medium. Energy Sources 2005, 27, 1235–1243. [CrossRef]

24. Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic Agriculture Wastes as Biomass Feedstocks for Second-Generation Bioethanol Production: Concepts and Recent Developments. 3 Biotech 2015, 5, 337–353. [CrossRef]

25. Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. Bioresources 2013, 8, 3157–3176. [CrossRef]

26. Cerino-Córdova, F.J.; Dávila-Guzmán, N.E.; García León, A.M.; Salazar-Rabago, J.J.; Soto-Regalado, E. Revalorization of Coffee Waste. In Coffee-Production and Research; IntechOpen: London, UK, 2020.

27. Kai, D.; Chow, L.P.; Loh, X.J. Lignin and Its Properties. In Functional Materials from Lignin: Methods and Advances; World Scientific Publishing: Singapore, 2018; pp. 1–28.

28. Zhang, C.; Wang, F. Catalytic Lignin Depolymerization to Aromatic Chemicals. Acc. Chem. Res. 2020, 53, 470–484. [CrossRef] [PubMed]

29. Pollegioni, L.; Tonin, F.; Rosini, E. Lignin-Degrading Enzymes. FEBS J. 2015, 282, 1190–1213. [CrossRef] [PubMed]

30. Zhang, H.; Stephanopoulos, G. Co-culture Engineering for Microbial Biosynthesis of 3-amino-benzoic Acid in Escherichia coli. Biotechnol. J. 2016, 11, 981–987. [CrossRef] [PubMed]

31. Tolbert, A.; Akinosho, H.; Khunsupat, R.; Naskar, A.K.; Ragauskas, A.J. Characterization and Analysis of the Molecular Weight of Lignin for Biorefining Studies. Biofuels Bioprod. Biorefining 2014, 8, 836–856. [CrossRef]

32. Lin, S.Y.; Dence, C.W. (Eds.) Methods in Lignin Chemistry; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-642-74067-1.

33. Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [CrossRef] [PubMed]

34. Parthasarathi, R.; Romero, R.A.; Redondo, A.; Gnanakaran, S. Theoretical Study of the Remarkably Diverse Linkages in Lignin. J. Phys. Chem. Lett. 2011, 2, 2660–2666. [CrossRef]

35. Huang, J.; Wu, S.; Cheng, H.; Lei, M.; Liang, J.; Tong, H. Theoretical Study of Bond Dissociation Energies for Lignin Model Compounds. J. Fuel Chem. Technol. 2015, 43, 429–436. [CrossRef]

36. Weng, C.; Peng, X.; Han, Y. Depolymerization and Conversion of Lignin to Value-Added Bioproducts by Microbial and Enzymatic Catalysis. Biotechnol. Biofuels 2021, 14, 84. [CrossRef]

37. Kosa, M.; Ragauskas, A.J. Bioconversion of Lignin Model Compounds with Oleaginous Rhodococci. Appl. Microbiol. Biotechnol. 2012, 93, 891–900. [CrossRef]

38. Sainsbury, P.D.; Hardiman, E.M.; Ahmad, M.; Otani, H.; Seghezzi, N.; Eltis, L.D.; Bugg, T.D.H. Breaking Down Lignin to High-Value Chemicals: The Conversion of Lignocellulose to Vanillin in a Gene Deletion Mutant of Rhodococcus Jostii RHA1. ACS Chem. Biol. 2013, 8, 2151–2156. [CrossRef] [PubMed]

39. Becker, J.; Kuhl, M.; Kohlstedt, M.; Starck, S.; Wittmann, C. Metabolic Engineering of Corynebacterium glutamicum for the Production of Cis, Cis-Muconic Acid from Lignin. Microb. Cell Fact. 2018, 17, 115. [CrossRef] [PubMed]

40. Yu, J.; Stahl, H. Microbial Utilization and Biopolyester Synthesis of Bagasse Hydrolysates. Bioresour. Technol. 2008, 99, 8042–8048. [CrossRef]

41. Wu, W.; Dutta, T.; Varman, A.M.; Eudes, A.; Manalansan, B.; Loqué, D.; Singh, S. Lignin Valorization: Two Hybrid Biochemical Routes for the Conversion of Polymeric Lignin into Value-Added Chemicals. Sci. Rep. 2017, 7, 8420. [CrossRef] [PubMed]

42. Reshmy, R.; Athiyaman Balakumaran, P.; Divakar, K.; Philip, E.; Madhavan, A.; Pugazhendhi, A.; Sirohi, R.; Binod, P.; Kumar Awasthi, M.; Sindhu, R. Microbial Valorization of Lignin: Prospects and Challenges. Bioresour. Technol. 2022, 344, 126240. [CrossRef]

43. Bharathiraja, B.; Sridharan, S.; Sowmya, V.; Yuvaraj, D.; Praveenkumar, R. Microbial Oil–A Plausible Alternate Resource for Food and Fuel Application. Bioresour. Technol. 2017, 233, 423–432. [CrossRef]

44. Li-Beisson, Y.; Peltier, G. Third-Generation Biofuels: Current and Future Research on Microalgal Lipid Biotechnology. OCL 2013, 20, D606. [CrossRef]

45. Anthony, W.E.; Carr, R.R.; DeLorenzo, D.M.; Campbell, T.P.; Shang, Z.; Foston, M.; Moon, T.S.; Dantas, G. Development of Rhodococcus Opacus as a Chassis for Lignin Valorization and Bioproduction of High-Value Compounds. Biotechnol. Biofuels 2019, 12, 192. [CrossRef]

46. Shields-Menard, S.A.; AmirSadeghi, M.; Green, M.; Womack, E.; Sparks, D.L.; Blake, J.; Edelmann, M.; Ding, X.; Sukhbaatar, B.; Hernandez, R.; et al. The Effects of Model Aromatic Lignin Compounds on Growth and Lipid Accumulation of Rhodococcus Rhodochrous. Int. Biodeterior. Biodegrad. 2017, 121, 79–90. [CrossRef]

47. Botstein, D.; Chervitz, S.A.; Cherry, M. Yeast as a Model Organism. Science 1997, 277, 1259–1260. [CrossRef] [PubMed]

48. Huccetogullari, D.; Luo, Z.W.; Lee, S.Y. Metabolic Engineering of Microorganisms for Production of Aromatic Compounds. Microb. Cell Fact. 2019, 18, 41. [CrossRef] [PubMed]

49. Wang, J.; Gao, Q.; Zhang, H.; Bao, J. Inhibitor Degradation and Lipid Accumulation Potentials of Oleaginous Yeast Trichosporon cutaneum Using Lignocellulose Feedstock. Bioresour. Technol. 2016, 218, 892–901. [CrossRef] [PubMed]

50. Šantek, M.I.; Lisicˇar, J.; Mušak, L.; Špoljaric´, I.V.; Beluhan, S.; Šantek, B. Lipid Production by Yeast Trichosporon oleaginosus on the Enzymatic Hydrolysate of Alkaline Pretreated Corn Cobs for Biodiesel Production. Energy Fuels 2018, 32, 12501–12513. [CrossRef]

51. Zhu, L.Y.; Zong, M.H.; Wu, H. Efficient Lipid Production with Trichosporon fermentans and Its Use for Biodiesel Preparation. Bioresour. Technol. 2008, 99, 7881–7885. [CrossRef]

52. Chen, X.; Li, Z.; Zhang, X.; Hu, F.; Ryu, D.D.Y.; Bao, J. Screening of Oleaginous Yeast Strains Tolerant to Lignocellulose Degradation Compounds. Appl. Biochem. Biotechnol. 2009, 159, 591–604. [CrossRef]

53. Hu, M.; Wang, J.; Gao, Q.; Bao, J. Converting Lignin Derived Phenolic Aldehydes into Microbial Lipid by Trichosporon cutaneum. J. Biotechnol. 2018, 281, 81–86. [CrossRef]

54. Zhang, Y.; Bao, J. Tolerance of Trichosporon Cutaneum to Lignin Derived Phenolic Aldehydes Facilitate the Cell Growth and Cellulosic Lipid Accumulation. J. Biotechnol. 2022, 343, 32–37. [CrossRef]

55. Yaguchi, A.; Robinson, A.; Mihealsick, E.; Blenner, M. Metabolism of Aromatics by Trichosporon oleaginosus While Remaining Oleaginous. Microb. Cell Fact. 2017, 16, 206. [CrossRef]

56. Yaegashi, J.; Kirby, J.; Ito, M.; Sun, J.; Dutta, T.; Mirsiaghi, M.; Sundstrom, E.R.; Rodriguez, A.; Baidoo, E.; Tanjore, D.; et al. Rhodosporidium toruloides: A New Platform Organism for Conversion of Lignocellulose into Terpene Biofuels and Bioproducts. Biotechnol. Biofuels 2017, 10, 241. [CrossRef]

57. Juanssilfero, A.B.; Kahar, P.; Amza, R.L.; Miyamoto, N.; Otsuka, H.; Matsumoto, H.; Kihira, C.; Thontowi, A.; Yopi; Ogino, C.; et al. Selection of Oleaginous Yeasts Capable of High Lipid Accumulation during Challenges from Inhibitory Chemical Compounds. Biochem. Eng. J. 2018, 137, 182–191. [CrossRef]

58. Sànchez i Nogué, V.; Black, B.A.; Kruger, J.S.; Singer, C.A.; Ramirez, K.J.; Reed, M.L.; Cleveland, N.S.; Singer, E.R.; Yi, X.; Yeap, R.Y.; et al. Integrated Diesel Production from Lignocellulosic Sugars via Oleaginous Yeast. Green Chem. 2018, 20, 4349–4365. [CrossRef]

59. Singhania, R.R.; Patel, A.K.; Raj, T.; Chen, C.-W.; Ponnusamy, V.K.; Tahir, N.; Kim, S.-H.; Dong, C.-D. Lignin Valorisation via Enzymes: A Sustainable Approach. Fuel 2022, 311, 122608. [CrossRef]

60. Tien, M.; Kirk, T.K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 1983, 221, 661–663. [CrossRef]

61. Thurston, C.F. The Structure and Function of Fungal Laccases. Microbiology 1994, 140, 19–26. [CrossRef]

62. Claus, H. Laccases and Their Occurrence in Prokaryotes. Arch. Microbiol. 2003, 179, 145–150. [CrossRef] [PubMed]

63. Janusz, G.; Pawlik, A.; Sulej, J.; S´widerska-Burek, U.; Jarosz-Wilkołazka, A.; Paszczyn´ski, A. Lignin Degradation: Microorganisms, Enzymes Involved, Genomes Analysis and Evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [CrossRef]

64. Dikshit, P.K.; Jun, H.-B.; Kim, B.S. Biological Conversion of Lignin and Its Derivatives to Fuels and Chemicals. Korean J. Chem. Eng. 2020, 37, 387–401. [CrossRef]

65. Antošová, Z.; Sychrová, H. Yeast Hosts for the Production of Recombinant Laccases: A Review. Mol. Biotechnol. 2016, 58, 93–116. [CrossRef]

66. Rodgers, C.J.; Blanford, C.F.; Giddens, S.R.; Skamnioti, P.; Armstrong, F.A.; Gurr, S.J. Designer Laccases: A Vogue for High- Potential Fungal Enzymes? Trends Biotechnol. 2010, 28, 63–72. [CrossRef]

67. Vieira Gomes, A.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 2018, 6, 38. [CrossRef] [PubMed]

68. Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia Pastoris: A Highly Successful Expression System for Optimal Synthesis of Heterologous Proteins. J. Cell Physiol. 2020, 235, 5867–5881. [CrossRef] [PubMed]

69. Plácido, J.; Capareda, S. Ligninolytic Enzymes: A Biotechnological Alternative for Bioethanol Production. Bioresour. Bioprocess. 2015, 2, 23. [CrossRef]

70. Bourbonnais, R.; Paice, M.G. Oxidation of Non-Phenolic Substrates. FEBS Lett. 1990, 267, 99–102. [CrossRef]

71. Lee, K.-M.; Kalyani, D.; Tiwari, M.K.; Kim, T.-S.; Dhiman, S.S.; Lee, J.-K.; Kim, I.-W. Enhanced Enzymatic Hydrolysis of Rice Straw by Removal of Phenolic Compounds Using a Novel Laccase from Yeast Yarrowia Lipolytica. Bioresour. Technol. 2012, 123, 636–645. [CrossRef]

72. Kalyani, D.; Tiwari, M.K.; Li, J.; Kim, S.C.; Kalia, V.C.; Kang, Y.C.; Lee, J.-K. A Highly Efficient Recombinant Laccase from the Yeast Yarrowia lipolytica and Its Application in the Hydrolysis of Biomass. PLoS ONE 2015, 10, e0120156. [CrossRef]

73. Zhang, Q.; Zhao, L.; Li, Y.; Wang, F.; Li, S.; Shi, G.; Ding, Z. Comparative Transcriptomics and Transcriptional Regulation Analysis of Enhanced Laccase Production Induced by Co-Culture of Pleurotus eryngii Var. Ferulae with Rhodotorula mucilaginosa. Appl. Microbiol. Biotechnol. 2020, 104, 241–255. [CrossRef]

74. Wakil, S.; Adebayo-Tayo, B.; Odeniyi, O.; Salawu, K.; Eyiolawi, S.; Onilude, A. Production, Characterization and Purification of Laccase by Yeasts Isolated from Ligninolytic Soil. J. Pure Appl. Microbiol. 2017, 11, 847–869. [CrossRef]

75. Piscitelli, A.; Giardina, P.; Mazzoni, C.; Sannia, G. Recombinant Expression of Pleurotus ostreatus Laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2005, 69, 428–439. [CrossRef]

76. Yang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front. Microbiol. 2017, 8, 832. [CrossRef]

77. Arana-Cuenca, A.; Téllez-Jurado, A.; Yagüe, S.; Fermiñan, E.; Carbajo, J.M.; Domínguez, A.; Gónzalez, T.; Villar, J.C.; González, A.E. Delignification of Pinus Radiata Kraft Pulp by Treatment with a Yeast Genetically Modified to Produce Laccases. For. Syst. 2010, 19, 234. [CrossRef]

78. Lu, C.; Wang, H.; Luo, Y.; Guo, L. An Efficient System for Pre-Delignification of Gramineous Biofuel Feedstock in Vitro: Application of a Laccase from Pycnoporus sanguineus H275. Process Biochem. 2010, 45, 1141–1147. [CrossRef]

79. Bao, W.; Peng, R.; Zhang, Z.; Tian, Y.; Zhao, W.; Xue, Y.; Gao, J.; Yao, Q. Expression, Characterization and 2,4,6-Trichlorophenol Degradation of Laccase from Monilinia fructigena. Mol. Biol. Rep. 2012, 39, 3871–3877. [CrossRef] [PubMed]

80. Liu, H.; Cheng, Y.; Du, B.; Tong, C.; Liang, S.; Han, S.; Zheng, S.; Lin, Y. Overexpression of a Novel Thermostable and Chloride- Tolerant Laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and Its Application in Synthetic Dye Decolorization. PLoS ONE 2015, 10, e0119833. [CrossRef]

81. Popovic´, N.; Pržulj, D.; Mladenovic´, M.; Prodanovic´, O.; Ece, S.; Ilic´ Ðurd¯ic´, K.; Ostafe, R.; Fischer, R.; Prodanovic´, R. Immobi- lization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces cyaneus within Dopamine-Alginate Beads for Dye Decolorization. Int. J. Biol. Macromol. 2021, 181, 1072–1080. [CrossRef]

82. Ji, L.; Shen, Y.; Xu, L.; Peng, B.; Xiao, Y.; Bao, X. Enhanced Resistance of Saccharomyces cerevisiae to Vanillin by Expression of LacA from Trametes Sp. AH28-2. Bioresour. Technol. 2011, 102, 8105–8109. [CrossRef]

83. Larsson, S.; Cassland, P.; Jönsson, L.J. Development of a Saccharomyces cerevisiae Strain with Enhanced Resistance to Phenolic Fermentation Inhibitors in Lignocellulose Hydrolysates by Heterologous Expression of Laccase. Appl. Environ. Microbiol. 2001, 67, 1163–1170. [CrossRef]

84. Nishibori, N.; Masaki, K.; Tsuchioka, H.; Fujii, T.; Iefuji, H. Comparison of Laccase Production Levels in Pichia pastoris and Cryptococcus Sp. S-2. J. Biosci. Bioeng. 2013, 115, 394–399. [CrossRef]

85. Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. [CrossRef]

86. Higuchi, T. Microbial Degradation of Lignin: Role of Lignin Peroxidase, Manganese Peroxidase, and Laccase. Proc. Jpn. Acad. Ser. B 2004, 80, 204–214. [CrossRef]

87. Kumar, A.; Chandra, R. Ligninolytic Enzymes and Its Mechanisms for Degradation of Lignocellulosic Waste in Environment. Heliyon 2020, 6, e03170. [CrossRef]

88. Biko, O.D.V.; Viljoen-Bloom, M.; van Zyl, W.H. Microbial Lignin Peroxidases: Applications, Production Challenges and Future Perspectives. Enzym. Microb. Technol. 2020, 141, 109669. [CrossRef] [PubMed]

89. Ali, S.S.; Al-Tohamy, R.; Sun, J. Performance of Meyerozyma caribbica as a Novel Manganese Peroxidase-Producing Yeast Inhabiting Wood-Feeding Termite Gut Symbionts for Azo Dye Decolorization and Detoxification. Sci. Total Environ. 2022, 806, 150665. [CrossRef] [PubMed]

90. Samir Ali, S.; Al-Tohamy, R.; Khalil, M.A.; Ho, S.-H.; Fu, Y.; Sun, J. Exploring the Potential of a Newly Constructed Manganese Peroxidase-Producing Yeast Consortium for Tolerating Lignin Degradation Inhibitors While Simultaneously Decolorizing and Detoxifying Textile Azo Dye Wastewater. Bioresour. Technol. 2022, 351, 126861. [CrossRef]

91. González, M.; Brito, N.; Hernández-Bolaños, E.; González, C. New Tools for High-throughput Expression of Fungal Secretory Proteins in Saccharomyces cerevisiae and Pichia pastoris. Microb. Biotechnol. 2019, 12, 1139–1153. [CrossRef]

92. Wang, W.; Wen, X. Expression of Lignin Peroxidase H2 from Phanerochaete chrysosporium by Multi-Copy Recombinant Pichia Strain. J. Environ. Sci. 2009, 21, 218–222. [CrossRef]

93. Majeke, B.M.; García-Aparicio, M.; Biko, O.D.; Viljoen-Bloom, M.; van Zyl, W.H.; Görgens, J.F. Synergistic Codon Optimization and Bioreactor Cultivation toward Enhanced Secretion of Fungal Lignin Peroxidase in Pichia pastoris: Enzymatic Valorization of Technical (Industrial) Lignins. Enzym. Microb. Technol. 2020, 139, 109593. [CrossRef] [PubMed]

94. Wang, H.; Lu, F.; Sun, Y.; Du, L. Heterologous Expression of Lignin Peroxidase of Phanerochaete chrysosporium in Pichia methanolica. Biotechnol. Lett. 2004, 26, 1569–1573. [CrossRef] [PubMed]

95. Ryu, K.; Hwang, S.Y.; Kim, K.H.; Kang, J.H.; Lee, E.K. Functionality Improvement of Fungal Lignin Peroxidase by DNA Shuffling for 2,4-Dichlorophenol Degradability and H2O2 Stability. J. Biotechnol. 2008, 133, 110–115. [CrossRef]

96. Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Insights into Lignin Degradation and Its Potential Industrial Applications. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2013; pp. 1–28.

97. Gu, L.; Lajoie, C.; Kelly, C. Expression of a Phanerochaete Chrysosporium Manganese Peroxidase Gene in the Yeast Pichia pastoris. Biotechnol. Prog. 2003, 19, 1403–1409. [CrossRef] [PubMed]

98. Jiang, F.; Kongsaeree, P.; Schilke, K.; Lajoie, C.; Kelly, C. Effects of PH and Temperature on Recombinant Manganese Peroxidase Production and Stability. Appl. Biochem. Biotechnol. 2008, 146, 15–27. [CrossRef] [PubMed]

99. Jiang, F.; Kongsaeree, P.; Charron, R.; Lajoie, C.; Xu, H.; Scott, G.; Kelly, C. Production and Separation of Manganese Peroxidase from Heme Amended Yeast Cultures. Biotechnol. Bioeng. 2008, 99, 540–549. [CrossRef] [PubMed]

100. Xu, H.; Scott, G.M.; Jiang, F.; Kelly, C. Recombinant Manganese Peroxidase (RMnP) from Pichia pastoris. Part 1: Kraft Pulp Delignification. Holzforschung 2010, 64, 145–151. [CrossRef]

101. Xu, H.; Guo, M.-Y.; Gao, Y.-H.; Bai, X.-H.; Zhou, X.-W. Expression and Characteristics of Manganese Peroxidase from Ganoderma Lucidum in Pichia pastoris and Its Application in the Degradation of Four Dyes and Phenol. BMC Biotechnol. 2017, 17, 19. [CrossRef] [PubMed]

102. Yee, K.L.; Jansen, L.E.; Lajoie, C.A.; Penner, M.H.; Morse, L.; Kelly, C.J. Furfural and 5-Hydroxymethyl-Furfural Degradation Using Recombinant Manganese Peroxidase. Enzym. Microb. Technol. 2018, 108, 59–65. [CrossRef] [PubMed]

103. Zhang, H.; Zhang, X.; Geng, A. Expression of a Novel Manganese Peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and Its Application in Dye Decolorization and PAH Degradation. Biochem. Eng. J. 2020, 153, 107402. [CrossRef]

104. Garcia-Ruiz, E.; Gonzalez-Perez, D.; Ruiz-Dueñas, F.J.; Martínez, A.T.; Alcalde, M. Directed Evolution of a Temperature-, Peroxide- and Alkaline PH-Tolerant Versatile Peroxidase. Biochem. J. 2012, 441, 487–498. [CrossRef] [PubMed]

105. Colao, M.; Lupino, S.; Garzillo, A.; Buonocore, V.; Ruzzi, M. Heterologous Expression of Lcc1 Gene from Trametes trogii in Pichia Pastoris and Characterization of the Recombinant Enzyme. Microb. Cell Fact. 2006, 5, 31. [CrossRef] [PubMed]

106. Ranieri, D.; Colao, M.C.; Ruzzi, M.; Romagnoli, G.; Bianchi, M.M. Optimization of Recombinant Fungal Laccase Production with Strains of the Yeast Kluyveromyces Lactis from the Pyruvate Decarboxylase Promoter. FEMS Yeast Res. 2009, 9, 892–902. [CrossRef]

107. Guo, M.; Lu, F.; Liu, M.; Li, T.; Pu, J.; Wang, N.; Liang, P.; Zhang, C. Purification of Recombinant Laccase from Trametes versicolor in Pichia methanolica and Its Use for the Decolorization of Anthraquinone Dye. Biotechnol. Lett. 2008, 30, 2091–2096. [CrossRef] [PubMed]

108. Zheng, M.; Chi, Y.; Yi, H.; Shao, S. Decolorization of Alizarin Red and Other Synthetic Dyes by a Recombinant Laccase from Pichia pastoris. Biotechnol. Lett. 2014, 36, 39–45. [CrossRef]

109. Lu, L.; Zhao, M.; Liang, S.-C.; Zhao, L.-Y.; Li, D.-B.; Zhang, B.-B. Production and Synthetic Dyes Decolourization Capacity of a Recombinant Laccase from Pichia pastoris. J. Appl. Microbiol. 2009, 107, 1149–1156. [CrossRef] [PubMed]

110. Gu, C.; Zheng, F.; Long, L.; Wang, J.; Ding, S. Engineering the Expression and Characterization of Two Novel Laccase Isoenzymes from Coprinus comatus in Pichia pastoris by Fusing an Additional Ten Amino Acids Tag at N-Terminus. PLoS ONE 2014, 9, e93912. [CrossRef]

111. Lin, Y.; Zhang, Z.; Tian, Y.; Zhao, W.; Zhu, B.; Xu, Z.; Peng, R.; Yao, Q. Purification and Characterization of a Novel Laccase from Coprinus Cinereus and Decolorization of Different Chemically Dyes. Mol. Biol. Rep. 2013, 40, 1487–1494. [CrossRef] [PubMed]

112. Li, J.F.; Hong, Y.Z.; Xiao, Y.Z.; Xu, Y.H.; Fang, W. High Production of Laccase B from Trametes Sp. in Pichia pastoris. World J. Microbiol. Biotechnol. 2007, 23, 741–745. [CrossRef]

113. Li, J.; Hong, Y.; Xiao, Y. Cloning and Heterologous Expression of the Gene of Laccase C from Trametes Sp. 420 and Potential of Recombinant Laccase in Dye Decolorization. Wei Sheng Wu Xue Bao 2007, 47, 54–58. [PubMed]

114. Hong, Y.; Zhou, H.; Tu, X.; Li, J.; Xiao, Y. Cloning of a Laccase Gene from a Novel Basidiomycete Trametes Sp. 420 and Its Heterologous Expression in Pichia pastoris. Curr. Microbiol. 2007, 54, 260–265. [CrossRef] [PubMed]

115. Li, Q.; Pei, J.; Zhao, L.; Xie, J.; Cao, F.; Wang, G. Overexpression and Characterization of Laccase from Trametes Versicolor in Pichia pastoris. Appl. Biochem. Microbiol. 2014, 50, 140–147. [CrossRef]

116. Li, Q.; Ge, L.; Cai, J.; Pei, J.; Xie, J.; Zhao, L. Comparison of Two Laccases from Trametes versicolor for Application in the Decolorization of Dyes. J. Microbiol. Biotechnol. 2014, 24, 545–555. [CrossRef] [PubMed]

117. Ilic´ Ðurd¯ic´, K.; Ece, S.; Ostafe, R.; Vogel, S.; Balaž, A.M.; Schillberg, S.; Fischer, R.; Prodanovic´, R. Flow Cytometry-Based System for Screening of Lignin Peroxidase Mutants with Higher Oxidative Stability. J. Biosci. Bioeng. 2020, 129, 664–671. [CrossRef] [PubMed]

118. Ilic´ Ðurd¯ic´, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanovic´, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochem. Eng. J. 2020, 157, 107555. [CrossRef]

119. Deparis, Q.; Claes, A.; Foulquié-Moreno, M.R.; Thevelein, J.M. Engineering Tolerance to Industrially Relevant Stress Factors in Yeast Cell Factories. FEMS Yeast Res. 2017, 17. [CrossRef] [PubMed]

120. Harwood, C.S.; Parales, R.E. The Beta-Ketoadipate Pathway and the Biology of Self-Identity. Annu Rev. Microbiol. 1996, 50, 553–590. [CrossRef] [PubMed]

121. Calixto-Campos, C.; Carvalho, T.T.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Fattori, V.; Manchope, M.F.; Zarpelon, A.C.; Baracat, M.M.; Georgetti, S.R.; Casagrande, R.; et al. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice. J. Nat. Prod. 2015, 78, 1799–1808. [CrossRef]

122. Kim, I.S.; Choi, D.-K.; Jung, H.J. Neuroprotective Effects of Vanillyl Alcohol in Gastrodia Elata Blume Through Suppression of Oxidative Stress and Anti-Apoptotic Activity in Toxin-Induced Dopaminergic MN9D Cells. Molecules 2011, 16, 5349–5361. [CrossRef]

123. Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [CrossRef]

124. Saratale, G.D.; Oh, M.-K. Improving Alkaline Pretreatment Method for Preparation of Whole Rice Waste Biomass Feedstock and Bioethanol Production. RSC Adv. 2015, 5, 97171–97179. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る