リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Local application of a transcutaneous carbon dioxide paste prevents excessive scarring and promotes muscle regeneration in a bupivacaine-induced rat model of muscle injury」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Local application of a transcutaneous carbon dioxide paste prevents excessive scarring and promotes muscle regeneration in a bupivacaine-induced rat model of muscle injury

Hirota, Junya Hasegawa, Takumi Inui, Atsuyuki Takeda, Daisuke Amano-Iga, Rika Yatagai, Nanae Saito, Izumi Arimoto, Satomi Akashi, Masaya 神戸大学

2022.10.17

概要

In postoperative patients with head and neck cancer, scar tissue formation may interfere with the healing process, resulting in incomplete functional recovery and a reduced quality of life. Percutaneous application of carbon dioxide (CO2) has been reported to improve hypoxia, stimulate angiogenesis, and promote fracture repair and muscle damage. However, gaseous CO2 cannot be applied to the head and neck regions. Previously, we developed a paste that holds non-gaseous CO2 in a carrier and can be administered transdermally. Here, we investigated whether this paste could prevent excessive scarring and promote muscle regeneration using a bupivacaine-induced rat model of muscle injury. Forty-eight Sprague Dawley rats were randomly assigned to either a control group or a CO2 group. Both groups underwent surgery to induce muscle injury, but the control group received no treatment, whereas the CO2 group received the CO2 paste daily after surgery. Then, samples of the experimental sites were taken on days 3, 7, 14, and 21 post-surgery to examine the following: (1) inflammatory (interleukin [IL]-1β, IL-6), and transforming growth factor (TGF)-β and myogenic (MyoD and myogenin) gene expression by polymerase chain reaction, (2) muscle regeneration with haematoxylin and eosin staining, and (3) MyoD and myogenin protein expression using immunohistochemical staining. Rats in the CO2 group showed higher MyoD and myogenin expression and lower IL-1β, IL-6, and TGF-β expression than the control rats. In addition, treated rats showed evidence of accelerated muscle regeneration. Our study demonstrated that the CO2 paste prevents excessive scarring and accelerates muscle regeneration. This action may be exerted through the induction of an artificial Bohr effect, which leads to the upregulation of MyoD and myogenin, and the downregulation of IL-1β, IL-6, and TGF-β. The paste is inexpensive and non-invasive. Thus, it may be the treatment of choice for patients with muscle damage.

この論文で使われている画像

参考文献

1. Shah S, Har-el G, Rosenfeld RM. Short-term and long-term quality of life after neck dissection. Head Neck. 2001;23(11): 954-961.

2. Nibu K, Ebihara Y, Ebihara M, et al. Quality of life after neck dissection: a multicenter longitudinal study by the Japanese Clinical Study Group on standardization of treatment for lymph node metastasis of head and neck cancer. Int J Clin Oncol. 2010;15(1):33-38.

3. Paul Van Wilgen C, Dijkstra PU, van der Laan BFAM, Plukker JT, Roodenburg JLN. Morbidity of the neck after head and neck cancer therapy. Head Neck. 2004;26:785-791.

4. Kamel FH, Basha M, Alsharidah A, Hewidy IM, Ezzat M, Aboelnour NH. Efficacy of extracorporeal shockwave therapy on cervical myofascial pain following neck dissection surgery: a randomized controlled trial. Ann Rehabil Med. 2020;44(5): 393-401.

5. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84(5):822-832.

6. Yamamoto N, Hashimoto M. Immersion in CO2-rich water containing NaCl diminishes blood pressure fluctuation in anes- thetized rats. Int J Biometeorol. 2007;52(2):109-116.

7. Brandi C, D'Aniello C, Grimaldi L, et al. Carbon dioxide ther- apy in the treatment of localized adiposities: clinical study and histopathological correlations. Aesthetic Plast Surg. 2001;25(3): 170-174.

8. Brandi C, Grimaldi L, Nisi G, et al. The role of carbon dioxide therapy in the treatment of chronic wounds. In Vivo. 2010; 24(2):223-226.

9. Seidel R, Moy R. Effect of carbon dioxide facial therapy on skin oxygenation. J Drugs Dermatol. 2015;14(9):976-980.

10. Sakai Y, Miwa M, Oe K, et al. A novel system for transcutane- ous application of carbon dioxide causing an "artificial Bohr effect " in the human body. PLoS One. 2011;6(9):e24137.

11. Saito I, Hasegawa T, Ueha T, et al. Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps. J Plast Reconstr Aesthet Surg. 2018;71(11):1644-1651.

12. Takeda D, Hasegawa T, Ueha T, et al. Transcutaneous carbon dioxide induces mitochondrial apoptosis and suppresses metas- tasis of oral squamous cell carcinoma in vivo. PLoS One. 2014; 9(7):e100530.

13. Yatagai N, Hasegawa T, Amano R, et al. Transcutaneous car- bon dioxide decreases immunosuppressive factors in squamous cell carcinoma in vivo. Biomed Res Int. 2021;2021:5568428.

14. Cianforlini M, Grassi M, Coppa V, et al. Skeletal muscle repair in a rat muscle injury model: the role of growth hormone(GH) injection. Eur Rev Med Pharmacol Sci. 2020;24(16):8566-8572.

15. Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377(6546):239-242.

16. Oe K, Ueha T, Sakai Y, et al. The effect of transcutaneous application of carbon dioxide (CO2) on skeletal muscle. Bio- chem Biophys Res Commun. 2011;407(1):148-152.

17. Irie H, Tatsumi T, Takamiya M, et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation. 2005;111(12):1523- 1529.

18. Akahane S, Sakai Y, Ueha T, et al. Transcutaneous carbon dioxide application accelerates muscle injury repair in rat models. Int Orthop. 2017;41(5):1007-1015.

19. Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72: 19-32.

20. Benoit PW, Belt WD. Degeneration and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine(Marcaine). J Anat. 1970;107(3):547-556.

21. Sakakima H, Kamizono T, Matsuda F, Izumo K, Ijiri K, Yoshida Y. Midkine and its receptor in regenerating rat skeletal muscle after bupivacaine injection. Acta Histochem. 2006; 108(5):357-364.

22. Nakasa T, Ishikawa M, Shi M, Shibuya H, Adachi N, Ochi M. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med. 2010;14(10):2495-2505.

23. Jeong W, Yang CE, Roh TS, Kim JH, Lee JH, Lee WJ. Scar pre- vention and enhanced wound healing induced by polydeoxyri- bonucleotide in a rat incisional wound-healing model. Int J Mol Sci. 2017;18(8):1-12.

24. Assis L, Moretti AI, Abraha˜o TB, de Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis ante- rior muscle after cryolesion. Lasers Med Sci. 2013;28(3): 947-955.

25. Mann CJ, Perdiguero E, Kharraz Y, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011; 1(1):1-20.

26. Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P. Role of transforming growth factor-β in skeletal muscle fibrosis: a review. Int J Mol Sci. 2019;20(10):2446.

27. Kollias HD, McDermott JC. Transforming growth factor-β and myostatin signaling in skeletal muscle. J Appl Physiol. 2008; 104(3):579-587.

28. Inoue S, Moriyama H, Wakimoto Y, et al. Transcutaneous application of carbon dioxide improves contractures after immobilization of rat knee joint. Phys Ther Res. 2020;23(2): 113-122.

29. Vidal B, Serrrano AL, Tjwa M, et al. Fibrinogen drives dystro- phic muscle fibrosis via a TGFβ/alternative macrophage activa- tion pathway. Genes Dev. 2008;22(13):1747-1752.

30. Vesey DA, Cheung C, Cuttle L, Endre Z, Gobe G, Johnson DW. Interleukin-1beta stimulates human renal fibroblast prolifera- tion and matrix protein production by means of a transforming growth factor-beta-dependent mechanism. J Lab Clin Med. 2002;140(5):342-350.

31. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364(7):656-665.

32. Hartmann G, Tachop M, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000;12(3): 246-252.

33. Alves AN, Ribeiro BG, Fernandes KPS, et al. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair. Lasers Med Sci. 2016;31(4):679-685.

34. Song DH, Kim MH, Lee YT, Lee JH, Kim KA, Kim SJ. Effect of high frequency electromagnetic wave stimulation on muscle injury in a rat model. Injury. 2018;49(6):1032-1037.

35. Otis JS, Niccoli S, Hawdon N, et al. Pro-inflammatory media- tion of myoblast proliferation. PLoS One. 2014;9(3):1-10.

36. Sakuma K, Watanabe K, Sano M, Uramoto I, Sakamoto K, Totsuka T. The adaptive response of MyoD family proteins in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta. 1999;1428(2–3):284-292.

37. Gomes AR, Soares AG, Peviani S, Nascimento RB, Moriscot AS, Salvini TF. The effect of 30 minutes of passive stretch of the rat soleus muscle on the myogenic differentia- tion, myostatin, and atrogin-1 gene expressions. Arch Phys Med Rehabil. 2006;87(2):241-246.

38. Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H. Satellite cell proliferation and the expression of myogenin and des- min in regenerating skeletal muscle: evidence for two differ- ent populations of satellite cells. Lab Invest. 1995;72(3): 341-347.

39. Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209-238.

40. Le GF, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007;19(6):628-633.

41. Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the peroxi- some proliferator-activated receptor-gamma Co-activator- 1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. J Biol Chem. 2009;284(33):21872-21880.

42. Koga T, Niikura T, Lee SY, et al. Topical cutaneous CO2 appli- cation by means of a novel hydrogel accelerates fracture repair in rats. J Bone Joint Surg Am. 2014;96(24):2077-2084.

43. Nishimoto H, Inui A, Ueha T, et al. Transcutaneous carbon diox- ide application with hydrogel prevents muscle atrophy in a rat sciatic nerve crush model. J Orthop Res. 2018;36(6):1653-1658.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る