リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cellular Release of Infectious Hepatitis C Virus Particles via Endosomal Pathways」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cellular Release of Infectious Hepatitis C Virus Particles via Endosomal Pathways

Deng, Lin Solichin, Muchamad R. Adyaksa, Dewa N. Septianastiti, Maria A. Fitri, Rhamadianti A. Suwardan, Gede N. Matsui, Chieko Abe, Takayuki Shoji, Ikuo 神戸大学

2023.12

概要

Hepatitis C virus (HCV) is a positive-sense, single-stranded RNA virus that causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The release of infectious HCV particles from infected hepatocytes is a crucial step in viral dissemination and disease progression. While the exact mechanisms of HCV particle release remain poorly understood, emerging evidence suggests that HCV utilizes intracellular membrane trafficking and secretory pathways. These pathways include the Golgi secretory pathway and the endosomal trafficking pathways, such as the recycling endosome pathway and the endosomal sorting complex required for transport (ESCRT)-dependent multivesicular bodies (MVBs) pathway. This review provides an overview of recent advances in understanding the release of infectious HCV particles, with a particular focus on the involvement of the host cell factors that participate in HCV particle release. By summarizing the current knowledge in this area, this review aims to contribute to a better understanding of endosomal pathways involved in the extracellular release of HCV particles and the development of novel antiviral strategies.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

World Health Organization (WHO). Hepatitis C. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/

hepatitis-c (accessed on 18 July 2023).

Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev.

Dis. Primers 2016, 2, 16018. [CrossRef]

Vermehren, J.; Park, J.S.; Jacobson, I.M.; Zeuzem, S. Challenges and perspectives of direct antivirals for the treatment of hepatitis

C virus infection. J. Hepatol. 2018, 69, 1178–1187. [CrossRef] [PubMed]

Heffernan, A.; Cooke, G.S.; Nayagam, S.; Thursz, M.; Hallett, T.B. Scaling up prevention and treatment towards the elimination of

hepatitis C: A global mathematical model. Lancet 2019, 393, 1319–1329. [CrossRef] [PubMed]

Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol. 2022,

19, 533–550. [CrossRef] [PubMed]

Viruses 2023, 15, 2430

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

9 of 12

Scheel, T.K.; Rice, C.M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat. Med. 2013,

19, 837–849. [CrossRef] [PubMed]

Moradpour, D.; Penin, F.; Rice, C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 2007, 5, 453–463. [CrossRef] [PubMed]

Lindenbach, B.D.; Rice, C.M. Unravelling hepatitis C virus replication from genome to function. Nature 2005, 436, 933–938.

[CrossRef] [PubMed]

Lindenbach, B.D.; Rice, C.M. The ins and outs of hepatitis C virus entry and assembly. Nat. Rev. Microbiol. 2013, 11, 688–700.

[CrossRef]

Coller, K.E.; Berger, K.L.; Heaton, N.S.; Cooper, J.D.; Yoon, R.; Randall, G. RNA interference and single particle tracking analysis

of hepatitis C virus endocytosis. PLoS Pathog. 2009, 5, e1000702. [CrossRef]

Gerold, G.; Moeller, R.; Pietschmann, T. Hepatitis C Virus Entry: Protein Interactions and Fusion Determinants Governing

Productive Hepatocyte Invasion. Cold Spring Harb. Perspect. Med. 2020, 10, a036830. [CrossRef]

Gosert, R.; Egger, D.; Lohmann, V.; Bartenschlager, R.; Blum, H.E.; Bienz, K.; Moradpour, D. Identification of the hepatitis C virus

RNA replication complex in Huh-7 cells harboring subgenomic replicons. J. Virol. 2003, 77, 5487–5492. [CrossRef] [PubMed]

Egger, D.; Wolk, B.; Gosert, R.; Bianchi, L.; Blum, H.E.; Moradpour, D.; Bienz, K. Expression of hepatitis C virus proteins induces

distinct membrane alterations including a candidate viral replication complex. J. Virol. 2002, 76, 5974–5984. [CrossRef]

Huang, L.Y.; Hwang, J.; Sharma, S.D.; Hargittai, M.R.S.; Chen, Y.F.; Arnold, J.J.; Raney, K.D.; Cameron, C.E. Hepatitis C virus

nonstructural protein 5A (NS5A) is an RNA-binding protein. J. Biol. Chem. 2005, 280, 36417–36428. [CrossRef]

Appel, N.; Zayas, M.; Miller, S.; Krijnse-Locker, J.; Schaller, T.; Friebe, P.; Kallis, S.; Engel, U.; Bartenschlager, R. Essential role

of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 2008, 4, e1000035.

[CrossRef] [PubMed]

Pietschmann, T.; Zayas, M.; Meuleman, P.; Long, G.; Appel, N.; Koutsoudakis, G.; Kallis, S.; Leroux-Roels, G.; Lohmann, V.;

Bartenschlager, R. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing

mutations. PLoS Pathog. 2009, 5, e1000475. [CrossRef] [PubMed]

Counihan, N.A.; Rawlinson, S.M.; Lindenbach, B.D. Trafficking of hepatitis C virus core protein during virus particle assembly.

PLoS Pathog. 2011, 7, e1002302. [CrossRef] [PubMed]

Shimotohno, K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb. Perspect. Med.

2021, 11, a036814. [CrossRef]

Timpe, J.M.; Stamataki, Z.; Jennings, A.; Hu, K.; Farquhar, M.J.; Harris, H.J.; Schwarz, A.; Desombere, I.; Roels, G.L.; Bafe, P.; et al.

Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 2008, 47, 17–24.

[CrossRef]

Witteveldt, J.; Evans, M.J.; Bitzegeio, J.; Koutsoudakis, G.; Owsianka, A.M.; Angus, A.G.; Keck, Z.Y.; Foung, S.K.; Pietschmann, T.;

Rice, C.M.; et al. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J. Gen. Virol. 2009, 90, 48–58.

[CrossRef]

Mankouri, J.; Walter, C.; Stewart, H.; Bentham, M.; Park, W.S.; Heo, W.D.; Fukuda, M.; Griffin, S.; Harris, M. Release of Infectious

Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density

Lipoprotein Secretion. J. Virol. 2016, 90, 7159–7170. [CrossRef] [PubMed]

Coller, K.E.; Heaton, N.S.; Berger, K.L.; Cooper, J.D.; Saunders, J.L.; Randall, G. Molecular determinants and dynamics of hepatitis

C virus secretion. PLoS Pathog. 2012, 8, e1002466. [CrossRef] [PubMed]

Syed, G.H.; Khan, M.; Yang, S.; Siddiqui, A. Hepatitis C Virus Lipoviroparticles Assemble in the Endoplasmic Reticulum (ER) and

Bud off from the ER to the Golgi Compartment in COPII Vesicles. J. Virol. 2017, 91, 1110–1128. [CrossRef] [PubMed]

Deng, L.; Liang, Y.; Ariffianto, A.; Matsui, C.; Abe, T.; Muramatsu, M.; Wakita, T.; Maki, M.; Shibata, H.; Shoji, I. Hepatitis C

Virus-Induced ROS/JNK Signaling Pathway Activates the E3 Ubiquitin Ligase Itch to Promote the Release of HCV Particles via

Polyubiquitylation of VPS4A. J. Virol. 2022, 96, e0181121. [CrossRef] [PubMed]

Ariumi, Y.; Kuroki, M.; Maki, M.; Ikeda, M.; Dansako, H.; Wakita, T.; Kato, N. The ESCRT system is required for hepatitis C virus

production. PLoS ONE 2011, 6, e14517. [CrossRef] [PubMed]

Corless, L.; Crump, C.M.; Griffin, S.D.; Harris, M. Vps4 and the ESCRT-III complex are required for the release of infectious

hepatitis C virus particles. J. Gen. Virol. 2010, 91, 362–372. [CrossRef]

Shrivastava, S.; Devhare, P.; Sujijantarat, N.; Steele, R.; Kwon, Y.C.; Ray, R.; Ray, R.B. Knockdown of Autophagy Inhibits Infectious

Hepatitis C Virus Release by the Exosomal Pathway. J. Virol. 2016, 90, 1387–1396. [CrossRef]

Bunz, M.; Ritter, M.; Schindler, M. HCV egress—Unconventional secretion of assembled viral particles. Trends Microbiol. 2022, 30,

364–378. [CrossRef]

Merquiol, E.; Uzi, D.; Mueller, T.; Goldenberg, D.; Nahmias, Y.; Xavier, R.J.; Tirosh, B.; Shibolet, O. HCV Causes Chronic

Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response. PLoS ONE 2011,

6, e24660. [CrossRef] [PubMed]

Bayer, K.; Banning, C.; Bruss, V.; Wiltzer-Bach, L.; Schindler, M. Hepatitis C Virus Is Released via a Noncanonical Secretory Route.

J. Virol. 2016, 90, 10558–10573. [CrossRef]

Emr, S.; Glick, B.S.; Linstedt, A.D.; Lippincott-Schwartz, J.; Luini, A.; Malhotra, V.; Marsh, B.J.; Nakano, A.; Pfeffer, S.R.; Rabouille,

C.; et al. Journeys through the Golgi--taking stock in a new era. J. Cell Biol. 2009, 187, 449–453. [CrossRef]

Viruses 2023, 15, 2430

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

10 of 12

Yarwood, R.; Hellicar, J.; Woodman, P.G.; Lowe, M. Membrane trafficking in health and disease. Dis. Models Mech. 2020,

13, dmm043448. [CrossRef] [PubMed]

Jensen, D.; Schekman, R. COPII-mediated vesicle formation at a glance. J. Cell Sci. 2011, 124, 1–4. [CrossRef] [PubMed]

Barlowe, C.; Orci, L.; Yeung, T.; Hosobuchi, M.; Hamamoto, S.; Salama, N.; Rexach, M.F.; Ravazzola, M.; Amherdt, M.; Schekman,

R. COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 1994, 77,

895–907. [CrossRef] [PubMed]

Barlowe, C. Signals for COPII-dependent export from the ER: What’s the ticket out? Trends Cell Biol. 2003, 13, 295–300. [CrossRef]

Allan, B.B.; Moyer, B.D.; Balch, W.E. Rab1 recruitment of p115 into a cis-SNARE complex: Programming budding COPII vesicles

for fusion. Science 2000, 289, 444–448. [CrossRef] [PubMed]

Plutner, H.; Cox, A.D.; Pind, S.; Khosravi-Far, R.; Bourne, J.R.; Schwaninger, R.; Der, C.J.; Balch, W.E. Rab1b regulates vesicular

transport between the endoplasmic reticulum and successive Golgi compartments. J. Cell Biol. 1991, 115, 31–43. [CrossRef]

Saraste, J.; Lahtinen, U.; Goud, B. Localization of the small GTP-binding protein rab1p to early compartments of the secretory

pathway. J. Cell Sci. 1995, 108 Pt 4, 1541–1552. [CrossRef]

Hutagalung, A.H.; Novick, P.J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 2011, 91, 119–149.

[CrossRef]

Slavin, I.; Garcia, I.A.; Monetta, P.; Martinez, H.; Romero, N.; Alvarez, C. Role of Rab1b in COPII dynamics and function. Eur. J.

Cell Biol. 2011, 90, 301–311. [CrossRef]

Stenmark, H.; Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2001, 2, reviews3007.1. [CrossRef]

Takacs, C.N.; Andreo, U.; Dao Thi, V.L.; Wu, X.; Gleason, C.E.; Itano, M.S.; Spitz-Becker, G.S.; Belote, R.L.; Hedin, B.R.; Scull, M.A.;

et al. Differential Regulation of Lipoprotein and Hepatitis C Virus Secretion by Rab1b. Cell Rep. 2017, 21, 431–441. [CrossRef]

[PubMed]

Griffiths, G.; Simons, K. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 1986, 234, 438–443.

[CrossRef] [PubMed]

Klumperman, J. Architecture of the mammalian Golgi. Cold Spring Harb. Perspect. Biol. 2011, 3, a005181. [CrossRef] [PubMed]

Rodriguez-Boulan, E.; Musch, A. Protein sorting in the Golgi complex: Shifting paradigms. Biochim. Biophys. Acta 2005, 1744,

455–464. [CrossRef]

Guo, Y.; Sirkis, D.W.; Schekman, R. Protein sorting at the trans-Golgi network. Annu. Rev. Cell Dev. Biol. 2014, 30, 169–206.

[CrossRef] [PubMed]

Progida, C.; Bakke, O. Bidirectional traffic between the Golgi and the endosomes—Machineries and regulation. J. Cell Sci. 2016,

129, 3971–3982. [CrossRef] [PubMed]

Naghavi, M.H.; Walsh, D. Microtubule Regulation and Function during Virus Infection. J. Virol. 2017, 91, 1110–1128. [CrossRef]

Scott, C.C.; Vacca, F.; Gruenberg, J. Endosome maturation, transport and functions. Semin. Cell Dev. Biol. 2014, 31, 2–10. [CrossRef]

Ang, A.L.; Taguchi, T.; Francis, S.; Folsch, H.; Murrells, L.J.; Pypaert, M.; Warren, G.; Mellman, I. Recycling endosomes can

serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol. 2004, 167, 531–543.

[CrossRef]

Tanaka, N.; Kyuuma, M.; Sugamura, K. Endosomal sorting complex required for transport proteins in cancer pathogenesis,

vesicular transport, and non-endosomal functions. Cancer Sci. 2008, 99, 1293–1303. [CrossRef]

Keen, J.H. Clathrin and associated assembly and disassembly proteins. Annu. Rev. Biochem. 1990, 59, 415–438. [CrossRef]

Brodsky, F.M. Diversity of clathrin function: New tricks for an old protein. Annu. Rev. Cell Dev. Biol. 2012, 28, 309–336. [CrossRef]

[PubMed]

Owen, D.J.; Collins, B.M.; Evans, P.R. Adaptors for clathrin coats: Structure and function. Annu. Rev. Cell Dev. Biol. 2004, 20,

153–191. [CrossRef]

Nakatsu, F.; Hase, K.; Ohno, H. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond. Membranes 2014, 4,

747–763. [CrossRef] [PubMed]

Gravotta, D.; Deora, A.; Perret, E.; Oyanadel, C.; Soza, A.; Schreiner, R.; Rodriguez-Boulan, E. AP1B sorts basolateral proteins in

recycling and biosynthetic routes of MDCK cells. Proc. Natl. Acad. Sci. USA 2007, 104, 1564–1569. [CrossRef] [PubMed]

Aguilar, R.C.; Boehm, M.; Gorshkova, I.; Crouch, R.J.; Tomita, K.; Saito, T.; Ohno, H.; Bonifacino, J.S. Signal-binding specificity of

the µ4 subunit of the adaptor protein complex AP-4. J. Biol. Chem. 2001, 276, 13145–13152. [CrossRef] [PubMed]

Bonifacino, J.S. The GGA proteins: Adaptors on the move. Nat. Rev. Mol. Cell Biol. 2004, 5, 23–32. [CrossRef]

Nokes, R.L.; Fields, I.C.; Collins, R.N.; Folsch, H. Rab13 regulates membrane trafficking between TGN and recycling endosomes

in polarized epithelial cells. J. Cell Biol. 2008, 182, 845–853. [CrossRef]

Ullrich, O.; Reinsch, S.; Urbe, S.; Zerial, M.; Parton, R.G. Rab11 regulates recycling through the pericentriolar recycling endosome.

J. Cell Biol. 1996, 135, 913–924. [CrossRef] [PubMed]

Benedicto, I.; Gondar, V.; Molina-Jimenez, F.; Garcia-Buey, L.; Lopez-Cabrera, M.; Gastaminza, P.; Majano, P.L. Clathrin mediates

infectious hepatitis C virus particle egress. J. Virol. 2015, 89, 4180–4190. [CrossRef]

Xiao, F.; Wang, S.; Barouch-Bentov, R.; Neveu, G.; Pu, S.; Beer, M.; Schor, S.; Kumar, S.; Nicolaescu, V.; Lindenbach, B.D.; et al.

Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release.

mBio 2018, 9, 1110–1128. [CrossRef] [PubMed]

Viruses 2023, 15, 2430

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

11 of 12

Bekerman, E.; Neveu, G.; Shulla, A.; Brannan, J.; Pu, S.Y.; Wang, S.; Xiao, F.; Barouch-Bentov, R.; Bakken, R.R.; Mateo, R.; et al.

Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J. Clin. Investig. 2017,

127, 1338–1352. [CrossRef] [PubMed]

Hurley, J.H.; Hanson, P.I. Membrane budding and scission by the ESCRT machinery: It’s all in the neck. Nat. Rev. Mol. Cell Biol.

2010, 11, 556–566. [CrossRef] [PubMed]

Christ, L.; Raiborg, C.; Wenzel, E.M.; Campsteijn, C.; Stenmark, H. Cellular Functions and Molecular Mechanisms of the ESCRT

Membrane-Scission Machinery. Trends Biochem. Sci. 2017, 42, 42–56. [CrossRef] [PubMed]

Barouch-Bentov, R.; Neveu, G.; Xiao, F.; Beer, M.; Bekerman, E.; Schor, S.; Campbell, J.; Boonyaratanakornkit, J.; Lindenbach, B.;

Lu, A.; et al. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery

via Ubiquitination to Facilitate Viral Envelopment. mBio 2016, 7, 1110–1128. [CrossRef] [PubMed]

Lai, C.K.; Jeng, K.S.; Machida, K.; Lai, M.M. Hepatitis C virus egress and release depend on endosomal trafficking of core protein.

J. Virol. 2010, 84, 11590–11598. [CrossRef] [PubMed]

Sandrin, V.; Boulanger, P.; Penin, F.; Granier, C.; Cosset, F.L.; Bartosch, B. Assembly of functional hepatitis C virus glycoproteins

on infectious pseudoparticles occurs intracellularly and requires concomitant incorporation of E1 and E2 glycoproteins. J. Gen.

Virol. 2005, 86, 3189–3199. [CrossRef]

Tamai, K.; Shiina, M.; Tanaka, N.; Nakano, T.; Yamamoto, A.; Kondo, Y.; Kakazu, E.; Inoue, J.; Fukushima, K.; Sano, K.; et al.

Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology 2012, 422, 377–385. [CrossRef]

Babst, M.; Wendland, B.; Estepa, E.J.; Emr, S.D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex

required for normal endosome function. EMBO J. 1998, 17, 2982–2993. [CrossRef]

Merrill, S.A.; Hanson, P.I. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme

autoinhibition. J. Biol. Chem. 2010, 285, 35428–35438. [CrossRef]

Norgan, A.P.; Davies, B.A.; Azmi, I.F.; Schroeder, A.S.; Payne, J.A.; Lynch, G.M.; Xu, Z.; Katzmann, D.J. Relief of autoinhibition

enhances Vta1 activation of Vps4 via the Vps4 stimulatory element. J. Biol. Chem. 2013, 288, 26147–26156. [CrossRef] [PubMed]

Deng, L.; Adachi, T.; Kitayama, K.; Bungyoku, Y.; Kitazawa, S.; Ishido, S.; Shoji, I.; Hotta, H. Hepatitis C virus infection induces

apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J. Virol. 2008, 82, 10375–10385.

[CrossRef] [PubMed]

Deng, L.; Shoji, I.; Ogawa, W.; Kaneda, S.; Soga, T.; Jiang, D.P.; Ide, Y.H.; Hotta, H. Hepatitis C virus infection promotes hepatic

gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J. Virol. 2011, 85, 8556–8568. [CrossRef]

Lin, W.; Tsai, W.L.; Shao, R.X.; Wu, G.; Peng, L.F.; Barlow, L.L.; Chung, W.J.; Zhang, L.; Zhao, H.; Jang, J.Y.; et al. Hepatitis C

virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor

kappaB-dependent manner. Gastroenterology 2010, 138, 2509–2518.e1. [CrossRef] [PubMed]

Qadri, I.; Iwahashi, M.; Capasso, J.M.; Hopken, M.W.; Flores, S.; Schaack, J.; Simon, F.R. Induced oxidative stress and activated

expression of manganese superoxide dismutase during hepatitis C virus replication: Role of JNK, p38 MAPK and AP-1. Biochem.

J. 2004, 378, 919–928. [CrossRef] [PubMed]

Bernassola, F.; Karin, M.; Ciechanover, A.; Melino, G. The HECT family of E3 ubiquitin ligases: Multiple players in cancer

development. Cancer Cell 2008, 14, 10–21. [CrossRef]

Melino, G.; Gallagher, E.; Aqeilan, R.I.; Knight, R.; Peschiaroli, A.; Rossi, M.; Scialpi, F.; Malatesta, M.; Zocchi, L.; Browne, G.; et al.

Itch: A HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 2008, 15, 1103–1112. [CrossRef]

Zhu, K.; Shan, Z.; Chen, X.; Cai, Y.; Cui, L.; Yao, W.; Wang, Z.; Shi, P.; Tian, C.; Lou, J.; et al. Allosteric auto-inhibition and

activation of the Nedd4 family E3 ligase Itch. EMBO Rep. 2017, 18, 1618–1630. [CrossRef]

Gallagher, E.; Gao, M.; Liu, Y.C.; Karin, M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced

conformational change. Proc. Natl. Acad. Sci. USA 2006, 103, 1717–1722. [CrossRef]

Su, W.C.; Chen, Y.C.; Tseng, C.H.; Hsu, P.W.; Tung, K.F.; Jeng, K.S.; Lai, M.M. Pooled RNAi screen identifies ubiquitin ligase Itch

as crucial for influenza A virus release from the endosome during virus entry. Proc. Natl. Acad. Sci. USA 2013, 110, 17516–17521.

[CrossRef]

Han, Z.; Sagum, C.A.; Bedford, M.T.; Sidhu, S.S.; Sudol, M.; Harty, R.N. ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus

VP40 to Regulate Budding. J. Virol. 2016, 90, 9163–9171. [CrossRef] [PubMed]

Lee, C.P.; Liu, G.T.; Kung, H.N.; Liu, P.T.; Liao, Y.T.; Chow, L.P.; Chang, L.S.; Chang, Y.H.; Chang, C.W.; Shu, W.C.; et al. The

Ubiquitin Ligase Itch and Ubiquitination Regulate BFRF1-Mediated Nuclear Envelope Modification for Epstein-Barr Virus

Maturation. J. Virol. 2016, 90, 8994–9007. [CrossRef] [PubMed]

Dorjbal, B.; Derse, D.; Lloyd, P.; Soheilian, F.; Nagashima, K.; Heidecker, G. The role of ITCH protein in human T-cell leukemia

virus type 1 release. J. Biol. Chem. 2011, 286, 31092–31104. [CrossRef] [PubMed]

Votteler, J.; Sundquist, W.I. Virus budding and the ESCRT pathway. Cell Host Microbe 2013, 14, 232–241. [CrossRef] [PubMed]

Garrus, J.E.; von Schwedler, U.K.; Pornillos, O.W.; Morham, S.G.; Zavitz, K.H.; Wang, H.E.; Wettstein, D.A.; Stray, K.M.; Côté,

M.; Rich, R.L.; et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001, 107, 55–65.

[CrossRef] [PubMed]

Feng, Z.D.; Hensley, L.; McKnight, K.L.; Hu, F.Y.; Madden, V.; Ping, L.F.; Jeong, S.H.; Walker, C.; Lanford, R.E.; Lemon, S.M. A

pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 2013, 496, 367–371. [CrossRef] [PubMed]

Viruses 2023, 15, 2430

88.

89.

90.

12 of 12

Wirblich, C.; Bhattacharya, B.; Roy, P. Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I

protein Tsg101. J. Virol. 2006, 80, 460–473. [CrossRef]

Zheng, Y.C.; Wang, M.F.; Li, S.T.; Bu, Y.N.; Xu, Z.C.; Zhu, G.G.; Wu, C.J.; Zhao, K.T.; Li, A.X.; Chen, Q.; et al. Hepatitis B virus

hijacks TSG101 to facilitate egress via multiple vesicle bodies. PLoS Pathog. 2023, 19, e1011382. [CrossRef]

Matsumoto, Y.; Matsuura, T.; Aoyagi, H.; Matsuda, M.; Hmwe, S.S.; Date, T.; Watanabe, N.; Watashi, K.; Suzuki, R.; Ichinose, S.;

et al. Antiviral Activity of Glycyrrhizin against Hepatitis C Virus. PLoS ONE 2013, 8, e68992. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る