リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Domain switching dynamics in relaxor ferroelectric Pb(Mg₁⁄₃Nb₂⁄₃)O₃-PbTiO₃ revealed by time-resolved high-voltage electron microscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Domain switching dynamics in relaxor ferroelectric Pb(Mg₁⁄₃Nb₂⁄₃)O₃-PbTiO₃ revealed by time-resolved high-voltage electron microscopy

Sato, Kazuhisa 大阪大学

2021.10.28

概要

Ferroelectric domain dynamics in Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystals have been studied by in situ biasing high-voltage transmis- sion electron microscopy with a direct electron detection camera. We have achieved time-resolved recording of polarization switching in real space on a 2.5 ms time scale. The reversible response of micrometer-scale domains was observed by applying an electric field of 1 kV/mm. Detailed analyses on smaller sized domains 100–500 nm in size revealed that the domain switching initiated at a corner of a rectangu- lar domain and propagated inward rapidly. The switching proceeded within 60 ms and the maximum switching rate, as fast as 6–8 μm/s, was observed. The domain switching kinetics was classified as two-dimensional nucleation and growth mode based on the Kolmogolov– Avrami–Ishibashi model.

この論文で使われている画像

参考文献

1 S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).

2 B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S.-E. Park, “A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution,” Appl. Phys. Lett. 74, 2059–2061 (1999).

3 H. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electro- mechanical response in single-crystal piezoelectrics,” Nature 403, 281–283 (2000).

4 B. Nodeda, D. E. Cox, G. Shirane, J. Gao, and Z.-G. Ye, “Phase diagram of the fer- roelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 66, 054104 (2002).

5 X. Tan, Z. Xu, J. K. Shang, and P. Han, “Direct observations of electric field-induced domain boundary cracking in <001> oriented piezoelectric Pb (Mg1/3Nb2/3)O3-PbTiO3 single crystal,” Appl. Phys. Lett. 77, 1529–1531 (2000).

6 Z. Xu, X. Tan, and J. K. Shang, “In situ transmission electron microscopy study of electric-field-induced microcracking in single crystal Pb(Mg1/3Nb2/3) O3-PbTiO3,” Appl. Phys. Lett. 76, 3732–3734 (2000).

7 Y. Sato, T. Hirayama, and Y. Ikuhara, “Real-time direct observations of polariza- tion reversal in a piezoelectric crystal: Pb(Mg1/3Nb2/3)O3-PbTiO3 studied via in situ electrical biasing transmission electron microscopy,” Phys. Rev. Lett. 107, 187601 (2011).

8 Y. Sato, T. Hirayama, and Y. Ikuhara, “Evolution of nanodomains under dc electrical bias in Pb(Mg1/3Nb2/3)O3-PbTiO3 : An in situ transmission electron microscopy study,” Appl. Phys. Lett. 100, 172902 (2012).

9 C. T. Nelson, P. Gao, J. R. Jokisaari, C. Heikes, C. Adamo, A. Melville, S.-H. Baek, C. M. Folkman, B. Winchester, Y. Gu, Y. Liu, K. Zhang, E. Wang, J. Li, L.-Q. Chen, C.-B. Eom, D. G. Schlom, and X. Pan, “Domain dynamics during ferroelectric switching,” Science 334, 968–971 (2011).

10 P. Gao, C. T. Nelson, J. R. Jokisaari, S.-H. Baek, C. W. Bark, Y. Zhang, E. Wang, D. G. Schlom, C.-B. Eom, and X. Pan, “Revealing the role of defects in ferroelectric switching with atomic resolution,” Nature Commun. 2, 591 (2011).

11 P. Gao, J. Britson, C. T. Nelson, J. R. Jokisaari, C. Duan, M. Trassin, S.-H. Baek, H. Guo, L. Li, Y. Wang, Y.-H. Chu, A. M. Minor, C.-B. Eom, R. Ramesh, L.-Q. Chen, and X. Pan, “Ferroelastic domain switching dynamics under electrical and mechanical excitations,” Nature Commun. 5, 3801 (2014).

12 J. K. Lee, G. Y. Shin, K. Song, W. S. Choi, Y. A. Shin, S. Y. Park, J. Britson, Y. Cao, L.-Q. Chen, H. N. Lee, and S. H. Oh, “Direct observation of asymmetric domain wall motion in a ferroelectric capacitor,” Acta Mater. 61, 6765–6777 (2013).

13 H.-G. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.-W. Wang, and H. Zheng, “Facet development during platinum nano- cube growth,” Science 345, 916–919 (2014).

14 V. Migunov, H. Ryll, X. Zhuge, M. Simson, L. Strüder, K. J. Batenburg, L. Houben, and R. Dunin-Borkowski, “Rapid low dose electron tomography using a direct electron detection camera,” Sci. Rep. 5, 14516 (2015).

15 K. Sato and H. Yasuda, “Fluctuation of long-range order in Co-Pt alloy nano- particles revealed by time-resolved electron microscopy,” Appl. Phys. Lett. 110, 153101 (2017).

16 H. Yasuda, “Fast in situ ultrahigh-voltage electron microscopy observation of crystal nucleation and growth in amorphous antimony nanoparticles,” Cryst. Growth Des. 18, 3302–3306 (2018).

17 F. Tsai and J. M. Cowley, “Thickness dependence of ferroelectric domains in thin crystalline films,” Appl. Phys. Lett. 65, 1906–1908 (1994).

18 K. Sato and H. Yasuda, “Probing crystal dislocations in a micrometer-thick GaN film by modern high-voltage electron microscopy,” ACS Omega 3, 13524–13529 (2018).

19 K. Sato and H. Yasuda, “Athermal crystal defect dynamics in Si revealed by cryo-high-voltage electron microscopy,” ACS Omega 5, 1457–1462 (2020).

20 C. Moriyoshi, S. Hiramoto, H. Ohkubo, Y. Kuroiwa, H. Osawa, K. Sugimoto, S. Kimura, M. Takata, Y. Kitanaka, Y. Noguchi, and M. Miyayama, “Synchrotron radiation study on time-resolved tetragonal lattice strain of BaTiO3 under electric field,” Jpn. J. Appl. Phys. 50, 09NE05 (2011).

21 Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, “Direct obser-vation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films,” J. Phys. Chem. Lett. 5, 3335–3339 (2014).

22 A. K. Singh and D. Pandey, “Evidence for MB and MC phases in the morpho- tropic phase boundary region of (1-x [Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A rietveld study,” Phys. Rev. B 67, 064102 (2003).

23 K.-H. Kim, D. A. Payne, and J.-M. Zuo, “Symmetry of piezoelectric (1−x)Pb (Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.31) single crystal at different length scales in the morphotropic phase boundary region,” Phys. Rev. B 86, 184113 (2012).

24 D. Vanderbilt and M. H. Cohen, “Monoclinic and triclinic phases in higher- order Devonshire theory,” Phys. Rev. B 63, 094108 (2001).

25 Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, “Low-symmetry monoclinic phases and polar- ization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films,” Adv. Funct. Mater. 21, 133–138 (2011).

26 B. Noheda, J. A. Gonzalo, L. E. Cross, R. Guo, S.-E. Park, D. E. Cox, and G. Shirane, “Tetragonal-to-monoclinic phase transition in a ferroelectric perov- skite: The structure of PbZr0.52Ti0.48O3,” Phys. Rev. B 61, 8687 (2000).

27 Y. Ishibashi and Y. Takagi, “Note on ferroelectric domain switching,” J. Phys. Soc. Jpn. 31, 506–510 (1971).

28 H. Orihara and Y. Ishibashi, “A statistical theory of nucleation and growth in finite systems,” J. Phys. Soc. Jpn. 61, 1919–1925 (1992).

29 Y. Ivry, J. F. Scott, E. K. H. Salje, and C. Durkan, “Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films,” Phys. Rev. B 86, 205428 (2012).

30 K. H. Lam, H. L. W. Chan, C. L. Choy, H. S. Luo, Q. R. Yin, and Z. W. Yin, “Properties of PMN-PT fibres fabricated using powder of PMN-PT single crys- tals,” Ceram. Int. 30, 1939–1943 (2004).

31 L. Luo, M. Dietze, C.-H. Solterbeck, H. Luo, and M. Es-Souni, “Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments,” J. Appl. Phys. 114, 224112 (2013).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る