リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on the Electrocaloric Effect in Ferroelectric Thin Films for Heat Pump Applications」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on the Electrocaloric Effect in Ferroelectric Thin Films for Heat Pump Applications

松下 裕司 大阪府立大学 DOI:info:doi/10.24729/00016970

2020.07.07

概要

Thanks to the decades of studies about the EC effect, the directly measured EC temperature change has reached 5.5 °C in Pb(Sco.5Tao.5)03 MLCs so far. Furthermore, the heat pumps using the EC effect generally consist of the EC materials and refrigerants. Thus it is required the mechanical part to move the refrigerant of fluids or solids, which makes the driving frequency lower than 10 Hz. Therefore, to enhance the output power, the bulk materials are employed as the EC components in the heat pumps to realize the sufficient heat capacity of the active elements in the devices. Additionally, since the A7fc has a proportional relationship against Δ£ as shown in Fig. 1-4, the high voltage in a range of kV is employed in the most EC devices. This thesis focuses on the EC effect in fenoelectric thin films, which is attributed not only to downsizing the device but also lowering the driving voltage. Although the small heat capacity makes it difficult to obtain the adiabatic EC temperature change and the large heat flow, the high-frequency driving can solve these issues even in thin-film structures. Finally, an all-solid-state heat pump was proposed based on the high- frequency induced EC effect in ferroelectric polymer thin films.

In Chapter 2, the direct measurement method was developed for the EC effect in ferroelectric thin films. A thin-film thermocouple was employed for the thermometer as well as the top electrode, which allows that the electric field is applied to the EC materials using bottom and top (thermocouple) electrode subsequently measuring temperature change to detect the thermoelectromotive force. BaTiCh ceramics were used for the EC materials, and approximately the same EC effect was obtained under a rectangular pulse and AC electric field, respectively. The direct measurement of EC eflfeet in thin films was also discussed.

In Chapter 3, the EC effect in ferroelectric polymer thin films was investigated. P(VDF-TrFE) was employed for EC film; Using the finite element method analysis, it was revealed that the ΔΤ could be obtained above 1 kHz at μm-thick films. Furthermore, the extractive heat density, which is in and out heat density from the films, was enhanced with increasing the frequency. Then, the gm-thick PfVDF-TrFE) were fabricated. It was found that the e31f coefficient strongly depended on the annealing temperature. Eventually, the direct measurement of the EC effect was carried out using the gm-thick P(VDF-TrFE) films. After eliminating the thermal dissipation effect, the temperature change of the films, of 0.29 °C was obtained, which corresponds to extractive heat, Qex, of 0.69 W/cm2 at 10 kHz.

In Chapter 4, the all-solid-state heat pump was proposed using a concept of a bucket-brigade operation and the ΔΤ/y/m experimentally detected in relaxor polymer films. The gm- thick PfVDF-TrFE-CFE) films were fabricated, which showed the non- ergodic relaxor properties. Under the uni-polar AC electric field, the frequency­ dependent LTfiim was obtained as 0.80 and 0.65 °C at 1.5 and 10 kHz, respectively. In spite of the decreasing of ΔT film against frequency, the enhancement of Qex was observed. The largest extractive heat of 1.54 W/cm2 at 10 kHz was higher than that in P(VDF-TrFE). Then, the all-solid-state heat pump with stacking layered structure was
investigated, and a pumping heat density of 0.30 mW/cm2 was obtained.

Chapter 5 summarizes the results and presents the conclusions of this thesis.

この論文で使われている画像

参考文献

[1] Bell,L. E. "Cooling,Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems". Science (80-.). 321, 1457-1461(2008).

[2] Peltier. "Nouvelles experiences sur la caloricite des courants electrique (New experiments on the heat effects of electric currents)". Ann. Chim. Phys. 56,371- 386(1834).

[3] Chang, C., Minghui, W., Dongsheng, H., Yanling, P., Chao-Feng, W., Xuefeng, W., Hulei, Y, Fangyuan, Z., Kedong, W., Yue, C., Li, H., Jing-Feng, L., Jiaqing, H., & Li-Dong, Z. et al. "3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals". Science (80-.). 360,778-783 (2018).

[4] Tan, G., Ohta, M. & Kanatzidis, M. G. "Thermoelectric power generation: from new materials to devices". Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20180450 (2019).

[5] Moya, X., Kar-Narayan, S. & Mathur, N. D. "Caloric materials near fenoic phase transitions". Nat. Mater.13,439-450 (2014).

[6] Giauque, W. F. & MacDougall,D. P. "Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2(SO4)3*8H2O". Phys. Rev. 43, 768-768 (1933).

[7] Yu, B., Liu, M., Egolf, P. W. & Kitanovski, A. "A review of magnetic refrigerator and heat pump prototypes built before the year 2010". Int. J. Refrig. 33,1029-1060(2010).

[8] Kitanovski, A., Tusek, J., Tome, U., Plaznik, U., Ozbolt, M., & Poredos, A. Magnetocaloric Energy Conversion. (Springer International Publishing, 2015).

[9] Waske, A., Herman, H., Mattern, N., Skokov, K., Gutfleisch, 〇., & Eckert, J. "Magnetocaloric effect of an Fe-based metallic glass compared to benchmark gadolinium". J. Appl. Phys. 112,123918 (2012).

[10] Moya, X., Defay, E., Heine, V. & Mathur, N. D. "Too cool to work". Nat. Phys. 11,202-205 (2015).

[11] TuSek, J” Engelbrecht, K., Mikkelsen, L. P. & Pryds, N. "Elastocaloric effect ofNi-Ti wire for application in a cooling device*'. J. Appl. Phys, 117, (2015).

[12] Brown, L. C. "The Thermal Effect in Pseudoelastic Single Crystals of β- CuZnSn". Metall. Mater. Trans. A 12,1491-1494 (1981).

[13] Bonnot, E., Romero, R., Manosa, L., Vives, E. & Planes, A. ’’Elastocaloric effect associated with the martensitic transition in shape-memory alloys". Rev. Lett.100,l」t (2008).

[14] Guyomar, D., Li, Y., Sebald. G., Cottinet, P., Duchame, B., & Capsal, J. "Elastocaloric modeling of natural rubber". Appl. Therm. Eng. 57,33-38 (2013).

[15] Xie, Z., Sebald, G. & Guyomar, D. "Comparison of direct and indirect measurement of the elastocaloric effect in natural rubber". Appl. Phys. Lett.108, 041901 (2016).

[16] Hou, H:, Cui, J., Qian, S., Catalini, D” Hwang, Y., Radermacher, R., & Takeuchi, I. "Overcoming fatigue through compression for advanced elastocaloric cooling". MRS Bull. 43,285-290 (2018).

[17] Maftosa,L., Gonzalez-Alonso, D., Planes, A., Bonnot, E., Barrio., M., Tamarit, J., Aksoy, S., & Acet, M. "Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy". Nat. Mater. 9,478-481(2010).

[18] Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. "Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN.". Nat. Mater. 14,73-8(2015).

[19] Bai, Y., Ding, K., Zheng, G., Shi, S., Cao, J., & Qiao, L. "The electrocaloric effect around the orthorhombic- tetragonal first-order phase transition in B^W^AIPAdv. 2, 022162 (2012).

[20] Tu§ek, J., Engelbrecht, K., Eriksen, D., Dall Olio, S., Tu§ek, J., & Pryds, N. "A regenerative elastocaloric heat pump". Nat. Energy 1,16134 (2016).

[21] Kumar, A., Chauhan, A., Patel,S., Novak, N., Kumar, R., & Vaish, R. "Vibration induced refrigeration using ferroelectric materials". Sci. Rep. 9,3922 (2Q19).

[22] Crossley, S., Nair, B” Whatmore, R. W” Moya, X. & Mathur, N. D. "Electrocaloric Cooling Cycles in Lead Scandium Tantalate with True Regeneration via Field Variation". Phys. Rev. X9,041002 (2019).

[23] Uchino, K., Sadanaga, E. & Hirose, T. "Dependence of the Crystal Structure on Particle Size in Barium Titanate". J. Am. Ceram. Soc. 72,1555-1558 (1989).

[24] Fahler, S. & Pecharsky, V. K. "Caloric effects in ferroic materials". MRS Bull. 43, 264-268 (2018).

[25] Vrabelj, M. "INVESTIGATIONS OF THE ELECTROCALORIC EFFECT IN THE POLYCRYSTALLINE 0.9Pb(Mgi/3Nb2n)03-0.1PbTi03 RELAXOR FERROELECTRIC". Doctoral thesis in Jozef Stefan Institute (2016).

[26] Bradesko, A., Hedl, A., Fulanovi6, L., Novak, N. & Rojac, T. "Self-heating of relaxor and ferroelectric ceramics during electrocaloric field cycling". APL胸er 7,071111(2019).

[27] Newnham, R. E. "Properties of materials: anisotropy, symmetry, structure". Choice Rev. Online 42,42-6504-42-6504 (2005).

[28] Perantie, J., Tailor, Η. N., Hagberg, J., Jantunen, H. & Ye, Z.-G. "Electrocaloric properties in relaxor ferroelectric (7-x)Pb(Mgi/3Nb2n)O3 -x PbTiCh system". J. Appl. Phys. 114,174105 (2013).

[29] Usui, T., Hirose, S., Ando, A., Crossley, S., Nair, B., Moya, X., & Mathur, N. D. "Effect of inactive volume on thermocouple measurements of electrocaloric temperature change in multilayer capacitors of 0.9Pb(Mgi/3Nb2/3)O3 一 O.lPbTiCh"· J. Phys. D. Appl. Phys. 50,424002 (2017).

[30] Nair, B., Usui, T., Crossley, S., Kurdi, S., Guzman-Verri, G. G., Moya, X., Hirose, S., & Mathur, N. D. "Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range". Nature 575, 468-472 (2019).

[31] Kar-Narayan, S. & Mathur, N. D. "Direct and indirect electrocaloric measurements using multilayer capacitors". J. Phys. D. Appl. Phys. 43, 032002 (2010).

[32] Jia, Y. & Sungtaek Ju, Y. "Direct characterization of the electrocaloric effects in thin films supported on substratesM. Appl. Phys. Lett. 103, 042903 (2013).

[33] Maiwa, H・"Characterization of electrocaloric properties by indirect estimation and direct measurement of temperature-electric field hysteresis loops". Jpn. J. Appl. Phys. 54,10NB08 (2015).

[34] Sebald, G., Seveyrat, L., Capsal, J.-F., Cottinet, P.-J. & Guyomar, D. "Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) terpolymer". Appl. Phys. Lett.101,022907 (2012).

[35] Guo, D., Gao, J., Yu, Y., Santhanam, S., Fedder, G. K., McGaughey, A. J. H., & Yao, S. C. "Electrocaloric characterization of a poly(vinylidene fluoride- trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging". Appl. Phys. Lett. 105, (2014).

[36] Kar-Narayan, S., Crossley S., Moya, X., Kovacova, V., Abergel, J., Bontempei, A., Baier, N., Defay, E., & Mathur, N. D. VDirect electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging". Appl. Phys. Lett. 102, 032903 (2013).

[37] Crossley, S., Usui, T., Nair, B., Kar-Narayan, S., Moya, X., Hirose, S., Ando, A. & Mathur, N. D. "Direct electrocaloric measurement of 0.9Pb(Mgi/3Nb2/3)O3 -0.1PbTiO3 films using scanning thermal microscopy". Appl. Phys. Lett. 108, 032902 (2016).

[38] Tong, T., Karthik, J., Mangalam, R. V. K., Martin, L. W. & Cahill,D. G. "Reduction of the electrocaloric entropy change of ferroelectric PbZri-xTixO3 epitaxial layers due to an elastocaloric effect". Phys. Rev. B 90,094116 (2014).

[39] Hopkins, P. E., Serrano, J. R., Phinney, L. M., Kearny, S. P., Grasser, T. M. & Harris, C. T. "Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating". J. Heat 7ra«5/er 132, 1-10(2010).

[40] Lin, G. C., Xiong, X. M., Zhang, J. X. & Wei, Q. "Latent heat study of phase transition in Bao.73Sro.27Ti03 induced by electric field". J. Therm. Anal. Calorim. 81,41-44 (2005).

[41] Rozic, B, Malic, B., Ursic, H, Hole, J., Kosec, M., Nesse, B, Zhang, Q. M, & Kutajak Z. "Direct Measurements of the Giant Electrocaloric Effect in Soft and Solid Ferroelectric Materials". Ferroelectrics 405, 26-31(2010).

[42] Correia, T. & Zhang, Q. Electrocaloric Materials, vol.34 (Springer Berlin Heidelberg, 2014).

[43] Lu, S. G., Rozid, B., Zhang, Q. M., Kutnjjak, Z., Li, X., Fuman, E., Gomy, L. J., Lin, M., Malic, B., Kosec, M., Blic, R., & Pirc, R. "Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect". Appl. Phys. Lett. 97,•162904 (2010)..

[44] Li, J., Li, J., Qin, S., Su, X., Qiao, L., Wang, ¥., Lookman, T., & Bai, Y. "Effects of Long- and Short-Range Ferroelectric Order on the Electrocaloric Effect in Relaxor Ferroelectric Ceramics". Phys. Rev. Appl.11,044032 (2019).

[45] Lu, S. G.; Rozic, B., Zhang, Q. M., Kutnjak, Z., Pirc, R., Lin, M., Li, X., and Gomy, L. "Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers". Appl. Phys. Lett. 97,202901(2010).

[46] Moya, X., Stem-Taulats, E., Crossley, S., Gonzalez-Alonso, D., Kar-Narayan, S., Planes, A., Manosa, L., & Mathur, N. D. "Giant Electrocaloric Strength in Single-Crystal BaTiCh”. Adv. Mater. 25,1360-1365 (2013).

[47] Goupil,F. Le, Berenov, A., Axelsson, A.-K., Valant, M. & Alford, N. M. "Direct and indirect electrocaloric measurements on (001)-PbMgi/3Nb2/3O3 - 30PbTiCh single crystals". J. Appl. Phys. Ill,124109 (2012).

[48] Matsuo, S., Yamada, T., Kamo, T., Funakubo, H, Yoshino, M., & Nagasaki, T. "Indirect measurements of electrocaloric effect in ferroelectric thin films by. positive-up-negative-down method". J. Ceram. Soc. Japan 125, 441-444 (2017).

[49] Kobeko, P. & Kurtschatov, J. "Dielektrische Eigenschaften der Seignettesalzkristalle". Zeitschriftfiir Phys. 66,192-205 (1930).

[50] Valasek, J. "Piezo-Electric and Allied Phenomena in Rochelle Salt". Phys. Rev. 17,475-481(1921).

[51] Wiseman, G. G. & Kuebler, J. K. "Electrocaloric Effect in Ferroelectric Rochelle Salt". Phys. Rev. 131, 2023-2027 (1963).

[52] Thacher, P. D. "Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O 3 Compounds". J. Appl. Phys. 39,1996-2002 (1968).

[53] Lawless, W. N. "Electrocaloric effects in antiferroelectric PbZrCh". Ferroelectr. Lett. Sect.15,27-31(1993).

[54] Sinyavsky, Y. V., Pashkov, N. D., Gorovoy, Y. M., Lugansky, G. E. & Shebanov, L. "The optical ferroelectric ceramic as working body for electrocaloric refrigeration". Ferroelectrics 90,213-217 (1989).

[55] Shebanov, L. & Borman, K. "On lead-scandium tantalate solid solutions with high electrocaloric effect". Ferroelectrics 127, 143-148 (1992).

[56] Shebanovs, L., Sternberg, A., Lawless, W. N. & Borman, K. "Isomorphous ion substitutions and order-disorder phenomena in highly electrocaloric lead­ scandium tantalate solid solutions". Ferroelectrics 184,239-242 (1996).

[57] Shebanovs, L., Borman, K., Lawless, W. N. & Kalvane, A. "Electrocaloric Effect in Some Perovskite Ferroelectric Ceramics and Multilayer Capacitors". Ferroelectrics 273,137-142 (2002).

[58] Xiao, D., Wang, Y. C., Zhang, R. L., Peng, S. Q., Zhu, J. G., & Yang, B. "Electrocaloric properties of (1-x)Pb(Mgi/3Nb2/3)O3-xPbTiO3 ferroelectric ceramics near room temperature". Mater. Chem. Phys. 57,182-185 (1998).

[59] Karchevskii, A. 1., Sov. Phys. -Solid State 3, 2249 (1962).

[60] Tuttle, B. A. & Payne, D. A. "The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)Ch ceramics". Ferroelectrics 37, 603-606 (1981).

[61] Sinyavsky, Y. V. & Brodyansky, V. M. "Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body". Ferroelectrics 131, 321-325 (1992).

[62] Mischenko, A., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. "Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.050 O3" Science (80·.). 311, 1270-1271(2006).

[63] Neese, B., Chu, B., Lu, S., Wang, Y., Furman, E., & Zhang, Q. M. "Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature". Science (80' ). 321, 821-823 (2008)..

[64] Bokov, A. A. & Ye, Z.-G. "Recent progress in relaxor ferroelectrics with perovskite structure". J. Mater. Sci. 41,31-52 (2006).

[65] Burton, B. P., Cockayne, E. & Waghmare, U. V. "Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lengthscale for polar nanoregions". Phys. Rev. B · Condens. Matter Mater. Phys. 72, 2-6 (2005).

[66] Li, F., Zhang, S., Xu, Z., Wei, X., Luo, J., & Shrout, T. R. "Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (7-x)Pb(Mgi/3Nb2/3)O3 - xPbTiCh crystals". J. Appl. Phys. 108, (2010).

[67] Kutajak, Z., Petzelt, J. & Blinc, R. "The giant electromechanical response in ferroelectric relaxors as a critical phenomenon". Nature 441, 956-959 (2006).

[68] Vrabelj, M., UrgiC, H., Kutnjak, Z., Rozic, B.,DronovSek, S., Bendan, A;, Babnor, V., Fulanovic, L., & MaliS, B. "Large electrocaloric effect in grain­ size-engineered 0.9Pb(Mgi/3Nb2/3)O3 -O.lPbTiCh". J. Eur. Ceram. Soc. 36,75- 80 (2016).

[69] Hagberg, J., Uusimaki, A. & Jantunen, H. "Electrocaloric characteristics in reactive sintered 0.87Pb(Mgi/3Nb2/3)O3-0.13PbTiO3". Appl. Phys. Lett. 92, 132909 (2008).

[70] Blumenthal,P., Molin, C., Gebhardt, S. & Raatz, A. "Active electrocaloric demonstrator for direct comparison of PMN-PT bulk and multilayer samples". Ferroelectrics 497,1-8 (2016).

[71] Hirose, S., Usui, T., Crossley, S., Nair, B., Ando, A., Moya, X., & Mathur, N. D. "Progress on electrocaloric multilayer ceramic capacitor development". APL Abater. 4,064105 (2016).

[72] Fulanovic, L” Dronovsek, S., Ursid, H., Vrabelj, M” Ku§cer, D., MakarboviS, K., Bobnar, V., Kutnjak, Z., & Malic, B· "Multilayer 0.9Pb(Mgi/3Nb2/3)O3 - O.lPbTiCh elements for electrocaloric cooling". J. Eur. Ceram. Soc. 37, 599- 603 (2017).

[73] Feng, Z., Shi, D., Zeng, R. & Dou, S. "Large electrocaloric effect of highly (lOO)-oriented 0.68PbMgi/3Nb2/3O3-O.32PbTiO3 thin films with a Pb(Zro.3Tio.7)03/PbOx buffer layer". Thin Solid Films 519, 5433-5436 (2011).

[74] Correia, T. M., Young, J. S., Whatmore, R. W., Scott, J. F., Mathur, N. D., & Zhang, Q. "Investigation of the electrocaloric effect in a PbMg2/3Nbi/3O3- PbTiO3 relaxor thin film". Appl. Phys. Lett. 95,182904 (2009).

[75] Mischenko, A. S., Zhang, Q., Whatmore, R. W., Scott, J. F. & Mathur, N. D. "Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMgi/3Nb2/3O3-0. lPbTiO3 near room temperature". Appl. Phys. Lett. 89, 242912 (2006).

[76] Pirc, R., Rozid, B., Koruza, J., Malic, B. & KutnjakrZ. "Negative electrocaloric effect in antifenoelectric PbZrOa". EPL (Europhysics Lett. 107,17002 (2014).

[77] Kittel,C. "Theory of Antiferroelectric Crystals". Phys. Rev. 82,729-732 (1951).

[78] Nishimatsu, T., A. Barr, J. & P. Beckman, S. "Direct Molecular Dynamics Simulation of Electrocaloric Effect in BaTiCh". J. Phys. Soc. Japan 82,114605 (2013).

[79] Liu, X. Q., Ghen, T. T., Fu, M. Sen, Wu, Y. J. & Chen, X. M. "Electrocaloric effects in spark plasma sintered BaojSrojTiCh-based ceramics: Effects of domain sizes and phase constitution". Ceram. Int. 40,11269-11276 (2014).

[80] Yamada, H., Yoshimura, T. & Fujimura, N. "Effects of polarization of polar semiconductor on electrical properties of poly(vinylidene fluoride- trifluoroethylene)/ZnO heterostructures". J. Appl. Phys, 117, 234101(2015).

[81] Klein, R. J., Runt, J. & Zhang, Q. M. "Influence of Crystallization Conditions on the Microstructure and Electromechanical Properties of Poly(vinylidene fluoride-trifluoroethylene - chlorofluoroethylene) Terpolymers"· Macromolecules 36, 7220-7226 (2003).

[82] Li, X., Qian, X., Lu, A. G., Cheng, J., Fang, Z., & Zhang, Q. M. "Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer". Appl. Phys. Lett. 99, 052907 (2011).

[83] Basso, V., Gerard, J.-F. & Pruvost, S. "Doubling the electrocaloric cooling of poled ferroelectric materials by bipolar cycling". Appl. Phys. Lett. 105, 052907 (2014).

[84] Basso, V., Russo, F., Gerard, J.-F. & Pruvost, S. "Direct measurement of the electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene- chlorotrifluoroethylene) terpolymer films". Appl. Phys. Lett. 103, 202904 (2013).

[85] Hoffmann, M. Schroeder, U., Kunneth, C., Kersch, A., Starschich, S., Bottger, U., & Mikolajick, T. "Ferroelectric phase transitions in nanoscale HfCh films enable giant pyroelectric energy conversion and highly efficient supercapacitors". Nano Energy 18,154-164 (2015).

[86] Park, Μ. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., Lee, Y. H., Hyun, S. D., & Hwang, C. S. "Giant Negative Electrocaloric Effects ofHfb.5Zro.5O2 Thin Films". Adv. Mater. 28, 7956-7961(2016).

[87] Qian, X.-S., Lu, S.-G., Li, X., Gu, H., Chien, L.-C., Zhang, Q. "Large Electrocaloric Effect in a Dielectric Liquid Possessing a Large Dielectric Anisotropy Near the Isotropic-Nematic Transition". Adv. Fund. Mater. 23, 2894-2898(2013).

[88] KlemenSid, E., TrCek, M., Kutnjak, Z. & Kralj, S. "Giant electrocaloric response in smectic liquid crystals with direct smectic-isotropic transition". Sci. Rep. 9, 1721(2019).

[89] Reis, M. S. & Soriano, S. "Electrocaloric effect on graphenes". Appl. Phys. Lett. 102,112903(2013).

[90] Valant, M. "Electrocaloric materials for future solid-state refirigeration technologies". Prog. Mater. Sci. 57, 980-1009 (2012).

[91] Olsen, R. B., Butler, W. F., Payne, D. A., Tuttle, B. A. & Held, P. C. "Observation of a Polarocaloric (Electrocaloric) Effect of 2°C in Lead Zirconate Modified with Sn4+ and Ti4+". Phys. Rev. Lett. 45,1436-1438 (1980).

[92] Imai, K. "Measurement of Ferroelectric Polarization along Critical Isotherm". Jpn. J. Appl. Phys. 20,1065 (1981).

[93] Birks, E., Shebanov, L. & Sternberg, A. "Electrocaloric effect in PLZT ceramics". Ferroelectrics 69,125-129 (1986).

[94] Birks, E. H. "The electrocaloric effect in Pb(Sco.5Nbo.5)Ch ceramic". Phys. Status Solidi 94,523-527 (1986).

[95] Shebanov, L. A., Birks, E. H., Borman, K. J. & Sternberg, A. R. "High electrocaloric effect ferroelectric ceramics". Ferroelectrics 94,305-305 (1989).

[96] Faye, R., Strozyk, H., Dkhil,B. & Defay, E. "Large heat flux in electrocaloric multilayer capacitors". J. Phys. D. Appl. Phys. 50,464002 (2017).

[97] Rozic, B., Ursic, H., Hole, J., Kosec, M. & Kutnjak, Z. "Direct Measurements of the Electrocaloric Effect In Substrate-Free PMN-0.35pt Thick Films on a Platinum Layer". Integr. Ferroelectr. 140, 161-165 (2012).

[98] Weyland, F., Eisele, T., Steiner, S., Fromling, T., Rossetti Jr., G. A., Rodel, J., & Novak, N., "Long term stability of electrocaloric response in barium zirconate titanate". J. Eur. Ceram. Soc. 38, 551-556 (2018).

[99] Fulanovic, L., Koruza, J., Novac, N., Weyland, F., Malic, B., & Bobnar, V. "Fatigue-less electrocaloric effect in relaxor Pb(Mgi/3Nb2/3)O3 multilayer elements". J. Eur. Ceram. Soc. 37, 5105-5108 (2017).

[100] Perantie, J., Hagberg, J., Uusimaki, A. & Jantunen, H. "Electric-field-induced dielectric and temperature changes in a <01l>-oriented Pb(Mgi/3Nb2/3)O3- PbTiO3 single crystal". Phys. Rev. B 82,134119 (2010).

[101] Valant, M., Dunne, L. J., Axelsson, A.-K. Alford, N. M., Manos, G., Perantie, J.,Hagberg, J., Juntunen, H., & Dabkowski, A. "Electrocaloric effect in a ferroelectric Pb(Zm/3Nb2/3)O3-PbTiO3 single crystal". Phys. Rev. B 81,214110 (2010).

[102] Qian, X.-S., Ye. H.-J., Zhang, Y.-T., Gu. H., Li, X., Randoil,C. A., Zhang, Q. M. "Giant Electrocaloric Response Over A Broad Temperature Range in Modified BaTiCh Ceramics". Adv. Fund. Mater. 24,1300-1305 (2014).

[103] Bai, Y., Zheng, G.-P. & Shi, S.-Q. "Abnormal electrocaloric effect of NaojBio.sTiCh -BaTiCh lead-free ferroelectric ceramics above room temperature". Mater. Res. Bull. 46,1866-1869 (2011).

[104] Novak, N., Kutajak, Z. & Pirc, R. "High-resolution electrocaloric and heat capacity measurements in barium titanate". EPL (Europhysics Lett. 103,47001 (2013).

[105] Bai, Y., Zheng, G. & Shi, S. "Direct measurement of giant electrocaloric effect in BaTiCh multilayer thick film structure beyond theoretical prediction". Appl. Phys. Lett. 96,192902 (2010).

[106] Lu, S. G., Rozid, B., Zhang, Q. M., Kutnjak, Z. & Neese, B. "Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition". Appl. Phys. Lett. 98,122906 (2011).

[107] Prah, U., Rojac, T., Wencka, M., Dragomir, M., Bradesko, A., Bendan, A., Sherbondy, R., Brennecka, G., Kutnjak, Z., Malic, B., & Ursic, H. "Improving the multicaloric properties of Pb(Feo.sNbo.5)03 by controlling the sintering conditions and doping with manganese". J. Eur. Ceram. Soc. 39, 4122-^1130 (2019).

[108] Le Goupil,F., Axelsson, A.-K., Valant, M., Lukasiewicz, T., Dec, J., Berenov, A., & Alford, N. M. "Effect of Ce doping on the electrocaloric effect of SrズBa八xNb206 single crystals". Appl. Phys. Lett. 104,222911(2014).

[109] Rami Chukka, Jun Wei Cheah, Zuhuang Chen, P. Yang, S. S, & Junling Wang, and L. C. "Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries". Appl. Phys. Lett. 98, 242902 (2011).

[110] Chen, H., Ren, T.-L., Wu, X.-M., Yang, Y. & Liu, L.-T. "Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite". AppL Phys. Lett. 94, 182902 (2009).

[111] Liu, P. F.,Wang, J. L., Meng, X. J., Yang, J., Dkhil,B., & Chu, J. H. "Huge electrocaloric effect in Langmuii^-Blodgett ferroelectric polymer thin films". New J. Phys.12,023035 (2010).

[112] Correia, T. M., Kar-Narayan, S., Young, J. S., Scott, J. F., Mathur, N. D., Whatmore, R. W., Zhang, Q. "PST thin films for electrocaloric coolers". J. Phys. Ώ.却p/. P*戸.44,165407 (2011).

[113] Peng, B., Fan, H. & Zhang, Q. "A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pbo.8Bao.2Zr03 Thin Film at Room Temperature". Adv. Fund. Mater. 23,2987- 2992(2013).

[114] Hao, X., Yue, Z., Xu, J., An, S. & Nan, C.-W. "Energy-storage performance and electrocaloric effect in (100)-oriented Pbo.97Lao.o2(Zro.95Tio.o5)03 antiferroelectric thick films". J. Appl. Phys.110,064109 (2011).

[115] Parui, J. & Krupanidhi, S. B. "Electrocaloric effect in antiferroelectric PbZrCh thin films". Phys, status solidi - Rapid Res. Lett. 2, 230-232 (2008).

[116] Marvan, M., Jonscher, A. K. & Fahnrich, J. "Electrocaloric effect as a cause of dielectric loss". J. Eur. Ceram. Soc. 21,1345-1348 (2001).

[117] Bai, Y., Zheng, G.-P., Ding, K., Qiao, L.,Shi, S.-Q., & Guo, D. "The giant electrocaloric effect and high effective cooling power near room temperature for BaTiCh thick film". J. Appl. Phys.110,094103 (2011).

[118] Plaznik, U„ Kitanovski, A., Rozic, Malic, B., UrSid, H., DmovSek, Silvo, Cilensek, J., Vrabelj, M., Poredo§, A., & Kutnjak, Z. "Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device". Appl. Phys. Lett. 106, 043903 (2015).

[119] Guo, D., Gao, J., Yu, Y., Santhanam, S., Slippey, A., Fedder, G. K., MacGaughey, A. J.H. & Yao, S. "Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system". Int. J. Heat Mass Transf. 72, 559— 564 (2014).

[120] Gu, H., Craven, B., Qian, X., Li, Cheng, A., & Zhang, Q. M. "Simulation of chip-size electrocaloric refrigerator with high cooling-power density". Appl. Phys. Lett. 102;112901(2013).

[121] Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S. C., & Zhang, Q. M. "A chip scale electrocaloric effect based cooling device". Appl. Phys. Lett. 102,122904 (2013).

[122] Blumenthal,P. & Raatz, A. "Classification of electrocaloric cooling device types". EPL (Europhysics Lett. 115,17004 (2016).

[123] Gu, H., Qian, X.-S., Ye, H.-J. & Zhang, Q. M. "An electrocaloric refrigerator without external regenerator". Appl. Phys. Lett. 105,162905 (2014).

[124] Ma, R., Zhang, Z., Tong, K., Huber, D., Kombluh, R., Ju, Y. S., & Pei, Q. "Highly efficient electrocaloric cooling with electrostatic actuation". Science (80-.). 357,1130-1134 (2017).

[125] Brade§ko, A., Juricic, D., Zamik, M. S., Kutnjak, Z., & Rojac, T. "Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration". Appl. Phys. Lett. 109,143508 (2016).

[126] Wang, Y. D., Smullin, S. J., Sheridan, M. J., Wang, Q., Eldershaw, C., & Schwartz, D. E. "A heat-switch-based electrocaloric cooler". Appl. Phys. Lett. 107,134103(2015).

[127] Sato, W. "A Study of a Cooling Device Based on the Electrocaloric Effect". Trans. JAPAN Soc. Meeh. Eng. Ser. B 79,1027-1037 (2013).

[128] Epstein, R. I. & Malloy, K. J. "Electrocaloric devices based on thin-film heat switches". J. Appl. Phys. 106,064509 (2009).

[129] Karmanenko, S. F., Pakhomov, O. V., Prudan, A. M., Starkov, A. S. & Eskov, A. "Layered ceramic structure based on the electrocaloric elements working as a solid state cooling line". J. Eur. Ceram. Soc. 27, 3109-3112 (2007).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る