リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrochemical development of magnetic long-range correlations with Tc = 128 K in a tetraoxolene-bridged Fe-based framework」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrochemical development of magnetic long-range correlations with Tc = 128 K in a tetraoxolene-bridged Fe-based framework

Jian Chen Kouji Taniguchi Yoshihiro Sekine Hitoshi Miyasaka 東北大学 DOI:10.1016/j.jmmm.2019.165818

2020.01.15

概要

The design of molecular magnets with a high magnetic phase transition temperature (Tc) is a
longstanding theme in the field of molecular materials science.[ 1 − 5 ] A class of metal–organic
frameworks (MOFs) with paramagnetic metal ions (M) bridged by -conjugated organic linkers (L)
is one of the promising candidates for molecular magnets because superexchange magnetic coupling
between metal spins is anticipated through -frontier orbitals.[ 6 − 8 ] However, with nonmagnetic
organic linkers, most MOFs only show paramagnetic behavior or weak magnetic correlations
resulting from long-distance superexchange interactions through -orbital overlapping over the linker
between metal spins (left in Scheme 1).[9−11] To improve this, the introduction of paramagnetic spin
(S = 1/2) into the linker molecule, i. ...

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

V. Gadet, T. Mallah, I. Castro, M. Verdaguer, High-Tc Molecular-Based Magnets: A Ferromagnetic

Bimetallic Chromium(III)-Nickel(II) Cyanide with Tc = 90 K, J. Am. Chem. Soc. 114 (1992) 9213−9214.

W. R. Entley, G. S. Girolami, High-Temperature Molecular Magnets Based on Cyanovanadate Building

Blocks: Spontaneous Magnetization at 230 K, Science 268 (1995) 397−400.

J. M. Manriquez, G. T. Yee, R. S. Mclean, A. J. Epstein, J. S. Miller, A Room-Temperature

Molecular/Organic-Based Magnet, Science 252 (1991) 1415−1417.

J. S. Miller, Magnetically Ordered Molecule-Based Materials, Chem. Soc. Rev. 40 (2011) 3266−3296.

E. Coronado, G. M. Espallargas, Dynamic Magnetic MOFs, Chem. Soc. Rev. 42 (2013) 1525−1539.

H. Tamaki, Z. J. Zhong, N. Matsumoto, S. Kida, M. Koikawa, N. Achiwa, Y. Hashimoto, H. Ōkawa,

Design of Metal-Complex Magnets. Syntheses and Magnetic Properties of Mixed-Metal Assemblies

{NBu4[MCr(ox)3]}x (NBu4+ = Tetra(n-butyl)ammonium Ion; ox2− = Oxalate Ion; M = Mn2+, Fe2+, Co2+,

Ni2+, Cu2+, Zn2+), J. Am. Chem. Soc. 114 (1992) 6974−6979.

E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-García, V. Laukhin, Coexistence of Ferromagnetism

and Metallic Conductivity in a Molecule-Based Layered Compound, Nature 408 (2000) 447−449.

M. Kurmoo, Magnetic Metal–Organic Frameworks, Chem. Soc. Rev. 38 (2009) 1353−1379.

S. Benmansour, C. Vallés-García, P. Gómez-Claramunt, G. M. Espallargas, C. J. Gómez-García, 2D and

3D Anilato-Based Heterometallic M(I)M(III) Lattices: The Missing Link, Inorg. Chem. 54 (2015)

5410−5418.

S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, D. J. Price, Syntheses,

Structures and Magnetism of α-Mn(dca)2, [Mn(dca)2(H2O)2]∙H2O, [Mn(dca)2(C2H5OH)2]∙(CH3)2CO,

[Fe(dca)2(CH3OH)2] and [Mn(dca)2(L)2], where L = pyridine, CH3OH or DMF and dca− = dicyanamide,

N(CN)2−, J. Chem. Soc., Dalton Trans. (1999) 2987−2997.

M. Atzori, S. Benmansour, G. M. Espallargas, M. Clemente-León, A. Abhervé, P. Gómez-Claramunt, E.

Coronado, F. Artizzu, E. Sessini, P. Deplano, A. Serpe, M. L. Mercuri, C. J. G. García, A Family of

Layered Chiral Porous Magnets Exhibiting Tunable Ordering Temperatures, Inorg. Chem. 52 (2013)

10031−10040.

K. S. Pedersen, P. Perlepe, M. L. Aubrey, D. N. Woodruff, S. E. Reyes-Lillo, A. Reinholdt, L. Voigt, Z. S.

Li, K. Borup, M. Rouzières, D. Samohvalov, F. Wilhelm, A. Rogalev, J. B. Neaton, J. R. Long, R. Clérac,

Formation of the Layered Conductive Magnet CrCl2(pyrazine)2 through Redox-Active Coordination

Chemistry, Nat. Chem. 10 (2018) 1056−1061.

I. R. Jeon, B. Negru, R. P. Van Duyne, T. D. Harris, A 2D Semiquinone Radical-Containing Microporous

Magnet with Solvent-Induced Switching from Tc = 26 to 80 K, J. Am. Chem. Soc. 137 (2015)

15699−15702.

H. Miyasaka, Control of Charge Transfer in Donor/Acceptor Metal-Organic Frameworks, Accounts Chem.

Res. 46 (2013) 248−257.

Y. Sekine, T. Shimada, H. Miyasaka, Ionic Donor-Acceptor Chain Derived from an Electron-Transfer

Reaction of a Paddlewheel-Type Diruthenium(II, II) Complex and N,N’-Dicyanoquinonediimine, Chem.

Eur. J. 24 (2018) 13093−13097.

W. Kosaka, H. Fukunaga, H. Miyasaka, Electron-Transferred Donor/Acceptor Ferrimagnet with TC = 91

K in a Layered Assembly of Paddlewheel [Ru2] Units and TCNQ, Inorg. Chem. 54 (2015), 10001−10006.

H. Miyasaka, N. Motokawa, S. Matsunaga, M. Yamashita, K. Sugimoto, T. Mori, N. Toyota, K. R. Dunbar,

Control of Charge Transfer in a Series of Ru2II,II/TCNQ Two-Dimensional Networks by Tuning the

Electron Affinity of TCNQ Units: A Route to Synergistic Magnetic/Conducting Materials, J. Am. Chem.

Soc. 132 (2010), 1532−1544.

W. Kosaka, T. Morita, T. Yokoyama, J. Zhang, H. Miyasaka, Fully Electron-Transferred Donor/Acceptor

15

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Layered Frameworks with TCNQ2−, Inorg. Chem. 54 (2015) 1518−1527.

N. Motokawa, H. Miyasaka, M. Yamashita, K. R. Dunbar, An Electron-Transfer Ferromagnet with Tc =

107 K Based on a Three-Dimensional [Ru2]2/TCNQ System, Angew. Chem. Int. Ed. 47 (2008) 7760−7763.

J. Chen, Y. Sekine, Y. Komatsumaru, S. Hayami, H. Miyasaka, Thermally Induced Valence Tautomeric

Transition in a Two-Dimensional Fe-Tetraoxolene Honeycomb Network, Angew. Chem. Int. Ed. 57 (2018)

12043−12047.

K. Taniguchi, K. Narushima, J. Mahin, W. Kosaka, H. Miyasaka, Construction of an Artificial

Ferrimagnetic Lattice by Lithium Ion Insertion into a Neutral Donor/Acceptor Metal-Organic Framework,

Angew. Chem. Int. Ed. 55 (2016) 5238−5242.

K. Taniguchi, K. Narushima, H. Sagayama, W. Kosaka, N. Shito, H. Miyasaka, In Situ Reversible Ionic

Control for Nonvolatile Magnetic Phases in a Donor/Acceptor Metal-Organic Framework, Adv. Funct.

Mater. 27 (2017) 1604990.

K. Taniguchi, K. Narushima, K. Yamagishi, N. Shito, W. Kosaka, H. Miyasaka, Magneto-Ionic Phase

Control in a Quasi-Layered Donor/Acceptor Metal-Organic Framework by Means of a Li-ion Battery

System, Jpn. J. Appl. Phys. 56 (2017), 060307.

K. Taniguchi, J. Chen, Y. Sekine, H. Miyasaka, Magnetic Phase Switching in a Tetraoxolene-Bridged

Honeycomb Ferrimagnet Using a Lithium Ion Battery System, Chem. Mater. 29 (2017) 10053−10059.

H. Fukunaga, M. Tonouchi, K. Taniguchi, W. Kosaka, S. Kimura, H. Miyasaka, Magnetic Switching by

the In Situ Electrochemical Control of Quasi-Spin-Peierls Singlet States in a Three-Dimensional Spin

Lattice Incorporating TTF-TCNQ Salts, Chem. Eur. J. 24 (2018) 4294−4303.

K. Taniguchi, N. Shito, H. Fukunaga, H. Miyasaka, Charge-Transfer Layered Assembly of a TransHeteroleptic Paddlewheel-Type Diruthenium(II, II) Complex with a TCNQ Derivative: Electrochemical

Tuning of the Magnetism, Chem. Lett. 47 (2018) 664−667.

J. A. DeGayner, K. Y. Wang, T. D. Harris, A Ferric Semiquinoid Single-Chain Magnet via ThermallySwitchable Metal−Ligand Electron Transfer, J. Am. Chem. Soc. 140 (2018) 6550−6553.

J. A. DeGayner, I. R. Jeon, L. Sun, M. Dincǎ, T. D. Harris, 2D Conductive Iron-Quinoid Magnets Ordering

up to Tc = 105 K via Heterogenous Redox Chemistry, J. Am. Chem. Soc. 139 (2017), 4175−4184.

G. V. Shilov, Z. K. Nikitina, N. S. Ovanesyan, S. M. Aldoshin, V. D. Makhaev, Phenazineoxonium

Chloranilatomanganate and Chloranilatoferrate: Synthesis, Structure, Magnetic Properties, and

Mössbauer Spectra, Russ. Chem. Bull. 60 (2011) 1209−1219.

K. Momma, F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and

Morphology Data, J. Appl. Cryst. 44 (2011) 1272−1276.

W. Weppner, R. A. Huggins, Determination of the Kinetic Parameters of Mixed-Conducting Electrodes

and Application to the System Li3Sb, J. Electrochem. Soc. 124 (1977) 1569−1578.

T. T. Luo, Y. H. Liu, H. L. Tsai, C. C. Su, C. H. Ueng, K. L. Lu, A Novel Hybrid Supramolecular Network

Assembled from Perfect π-π Stacking of an Anionic Inorganic Layer and a Cationic Hydronium-Ion

Mediated Organic Layer, Eur. J. Inorg. Chem. (2004) 4253−4258.

J. B. Goodenough, K. S. Park, The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc. 135

(2013) 1167−1176.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-Sized Transition-Metaloxides as

Negative-Electrode Materials for Lithium-Ion Batteries, Nature 407 (2000) 496−499.

T. G. Kim, J. G. Lee, D. Son, S. Jin, M. G. Kim, B. Park, Reaction Mechanisms of Tridymite Iron

Phosphate with Lithium Ions in the Low-Voltage Range, Electrochim. Acta 53 (2007) 1843−1849.

M. X. Gao, P. Zhou, P. Wang, J. H. Wang, C. Liang, J. L. Zhang, Y. F. Liu, FeO/C Anode Materials of

High Capacity and Cycle Stability for Lithium-Ion Batteries Synthesized by Carbothermal Reduction, J.

Alloy. Comp. 565 (2013) 97−103.

G. Q. Diao, M. S. Balogun, S. Y. Tong, X. Z. Guo, X. Huang, Y. C. Mao, Y. X. Tong, J. Mater. Chem. A

16

[38]

6 (2018) 15274−15283.

Z. P. Song, Y. M. Qian, X. Z. Liu, T. Zhang, Y. B. Zhu, H. J. Yu, M. Otani, H. S. Zhou, A Quinone-Based

Oligomeric Lithium Salt for Superior Li-Organic Batteries, Energy Environ. Sci. 7 (2014) 4077−4086.

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る