リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mitochondrial dysfunction-induced high hCG associated with development of fetal growth restriction and pre-eclampsia with fetal growth restriction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mitochondrial dysfunction-induced high hCG associated with development of fetal growth restriction and pre-eclampsia with fetal growth restriction

Kiyokoba, Ryo 清木場, 亮 キヨコバ, リョウ Uchiumi, Takeshi 内海, 健 ウチウミ, タケシ Toshima, Takahiro 十島, 崇嘉 トシマ, タカヒロ Tsukahara, Shigehiro 塚原, 茂大 ツカハラ, シゲヒロ Fujita, Yasuyuki 藤田, 恭之 フジタ, ヤスユキ Kato, Kiyoko 加藤, 聖子 カトウ, キヨコ Kang, Dongchon 九州大学

2022.05.08

概要

Fetal growth restriction (FGR) and pre-eclampsia with fetal growth restriction (PE/FGR) are high-risk perinatal diseases that may involve high levels of human chorionic gonadotropin (hCG) and mitochon

この論文で使われている画像

参考文献

1. Kady, S. M. & Gardosi, J. Perinatal mortality and fetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 18, 397–410 (2004).

2. Hutcheon, J. A., Lisonkova, S. & Joseph, K. S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy.

Best Pract. Res. Clin. Obstet. Gynaecol. 25, 391–403 (2011).

3. Sibley, C. P. Treating the dysfunctional placenta. J. Endocrinol. 234, R81–R97 (2017).

4. Kaufmann, P., Black, S. & Huppertz, B. Endovascular trophoblast invasion: Implications for the pathogenesis of intrauterine growth

retardation and preeclampsia. Biol. Reprod. 69, 1–7 (2003).

5. Redman, C. W. & Sargent, I. L. Latest advances in understanding preeclampsia. Science 308, 1592–1594 (2005).

6. Villar, J. et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions?. Am.

J. Obstet. Gynecol. 194, 921–931 (2006).

7. Nwabuobi, C. et al. hCG: Biological functions and clinical applications. Int. J. Mol. Sci. 18, 2037 (2017).

8. Braunstein, G. D., Rasor, J., Adler, D., Danzer, H. & Wade, M. E. Serum human chorionic gonadotropin levels throughout normal

pregnancy. Am. J. Obstet. Gynecol. 126, 678–681 (1976).

9. Sharma, V., Sharma, P. & Firdous, N. Beta hCG in mid trimester as a predictor of pregnancy induced hypertension. Int. J. Sci. Res.

5, 303–305 (2016).

10. Choudhury, K. M., Das, M., Ghosh, S., Bhattacharya, D. & Ghosh, T. K. Value of serum β-hCG in pathogenesis of pre-eclampsia.

J. Clin. Gynecol. Obstet. 1, 71–75 (2012).

11. Boonpiam, R. et al. Quad test for fetal aneuploidy screening as a predictor of small-for-gestational age fetuses: A population-based

study. BMC Pregnancy Childbirth. 20, 621 (2020).

Scientific Reports |

(2022) 12:4056 |

https://doi.org/10.1038/s41598-022-07893-y

13

Vol.:(0123456789)

www.nature.com/scientificreports/

12. Fitzgerald, B. et al. Villous trophoblast abnormalities in extremely preterm deliveries with elevated second trimester maternal

serum hCG or inhibin-A. Placenta 32, 339–345 (2011).

13. Önderoǧlu, L. S. & Kabukçu, A. Elevated second trimester human chorionic gonadotropin level associated with adverse pregnancy

outcome. Int. J. Gynecol. Obstet. 56, 245–249 (1997).

14. Chandra, S. et al. Unexplained elevated maternal serum α-fetoprotein and/or human chorionic gonadotropin and the risk of

adverse outcomes. Am. J. Obstet. Gynecol. 189, 775–781 (2003).

15. Odibo, A. O., Sehdev, H. M., Stamilio, D. M. & Macones, G. A. Evaluating the thresholds of abnormal second trimester multiple

marker screening tests associated with intra-uterine growth restriction. Am. J. Perinatol. 23, 363–367 (2006).

16. Martinez, F., Olvera-Sanchez, S., Esparza-Perusquia, M., Gomez-Chang, E. & Flores-Herrera, O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 103, 11–22 (2015).

17. Holland, O. et al. Review: Placental mitochondrial function and structure in gestational disorders. Placenta 54, 2–9 (2017).

18. Muta, T., Kang, D., Kitajima, S., Fujiwara, T. & Hamasaki, N. p32 Protein, a splicing factor 2-associated protein, is localized in

mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J. Biol. Chem. 272, 24363–24370

(1997).

19. Kim, K. B. et al. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and

cancer metastasis. J. Biol. Chem. 286, 23093–23101 (2011).

20. Gotoh, K. et al. Mitochondrial p32/C1qbp is a critical regulator of dendritic cell metabolism and maturation. Cell Rep. 25, 1800–

1815 (2018).

21. Matos, P. et al. A role for the mitochondrial-associated protein p32 in regulation of trophoblast proliferation. Mol. Hum. Reprod.

20, 745–755 (2014).

22. Zsengellér, Z. K. et al. Trophoblast mitochondrial function is impaired in preeclampsia and correlates negatively with the expression of soluble fms-like tyrosine kinase 1. Pregnancy Hypertens. 6, 313–319 (2016).

23. Zhou, X. et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp. Cell Res. 359, 195–204 (2017).

24. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

25. Bodnar, R. J., Yates, C. C. & Wells, A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube

formation via inhibition of calpain. Circ. Res. 98, 617–625 (2006).

26. Maisonpierre, P. C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

27. Gupta, A. K., Hasler, P., Holzgreve, W., Gebhardt, S. & Hahn, S. Induction of neutrophil extracellular DNA lattices by placental

microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol. 66, 1146–1154 (2005).

28. Otun, H. A. et al. Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast

invasion. J. Reprod. Immunol. 88, 1–11 (2011).

29. Xu, B., Nakhla, S., Makris, A. & Hennessy, A. TNF-α inhibits trophoblast integration into endothelial cellular networks. Placenta

32, 241–246 (2011).

30. Bauer, S. et al. Tumor necrosis factor-α inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in

first-trimester villous explant cultures. J. Clin. Endocrinol. Metab. 89, 812–822 (2004).

31. Leinonen, E. et al. Maternal serum angiopoietin-1 and -2 and tie-2 in early pregnancy ending in preeclampsia or intrauterine

growth retardation. J. Clin. Endocrinol. Metab. 95, 126–133 (2010).

32. Szarka, A., Rigó, J. Jr., Lázár, L., Beko, G. & Molvarec, A. Circulating cytokines, chemokines and adhesion molecules in normal

pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 11, 59 (2010).

33. Raghupathy, R., Al-Azemi, M. & Azizieh, F. Intrauterine growth restriction: cytokine profiles of trophoblast antigen-stimulated

maternal lymphocytes. Clin. Dev. Immunol. 2012, 734865 (2012).

34. Zhou, C. C. et al. Autoantibody from women with preeclampsia induces soluble fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension 51, 1010–1019 (2008).

35. Tal, R. et al. Effects of hypoxia-inducible factor-1α overexpression in pregnant mice: Possible implications for preeclampsia and

intrauterine growth restriction. Am. J. Pathol. 177, 2950–2962 (2010).

36. Montero, R. et al. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS

ONE 11, e0148709 (2016).

37. Casarini, L. et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 7, e46682 (2012).

38. Choi, J. & Smitz, J. Luteinizing hormone and human chorionic gonadotropin: Origins of difference. Mol. Cell Endocrinol. 383,

203–213 (2014).

39. McAllister, J. M., Legro, R. S., Modi, B. P. & Strauss, J. F. 3rd. Functional genomics of PCOS: From GWAS to molecular mechanisms.

Trends Endocrinol. Metab. 26, 118–124 (2015).

40. Kang, I., Chu, C. T. & Kaufman, B. A. The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence

and mechanisms. FEBS Lett. 592, 793–811 (2018).

41. Hu, X. Q. & Zhang, L. Hypoxia and mitochondrial dysfunction in pregnancy complications. Antioxidants. 10, 405 (2021).

42. Lin, L. H. et al. Multiple pregnancies with complete mole and coexisting normal fetus in North and South America: A retrospective

multicenter cohort and literature review. Gynecol. Oncol. 145, 88–95 (2017).

43. Paré, E. et al. Clinical risk factors for preeclampsia in the 21st century. Obstet. Gynecol. 124, 763–770 (2014).

44. Kaur, G., Jain, V., Mehta, S. & Himani, S. Prediction of PIH by maternal serum beta hCG levels in the second trimester (13–20

weeks) of pregnancy. J. Obstet. Gynecol. India. 62, 32–34 (2012).

45. Strohmer, H. et al. Hypoxia downregulates continuous and interleukin-1-induced expression of human chorionic gonadotropin

in choriocarcinoma cells. Placenta 18, 597–604 (1997).

46. Esterman, A., Finlay, T. H. & Dancis, J. The effect of hypoxia on term trophoblast: Hormone synthesis and release. Placenta 17,

217–222 (1996).

47. Alsat, E. et al. Hypoxia impairs cell fusion and differentiation process in human cytotrophoblast, in vitro. J. Cell Physiol. 168,

346–353 (1996).

48. Shao, R. et al. Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1alpha in adult mouse brain

and heart in vivo. FEBS Lett. 569, 293–300 (2004).

49. Bae, S. et al. Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 324,

394–400 (2004).

50. Isoe, T. et al. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate

response element binding protein. Kidney Int. 78, 48–59 (2010).

51. Watson, A. L., Skepper, J. N., Jauniaux, E. & Burton, G. J. Susceptibility of human placental syncytiotrophoblastic mitochondria

to oxygen-mediated damage in relation to gestational age. J. Clin. Endocrinol. Metab. 83, 1697–1705 (1998).

52. Watson, A. L., Skepper, J. N., Jauniaux, E. & Burton, G. J. Changes in concentration, localization and activity of catalase within the

human placenta during early gestation. Placenta 19, 27–34 (1998).

53. Watson, A. L., Palmer, M. E., Jauniaux, E. & Burton, G. J. Variations in expression of copper/zinc superoxide dismutase in villous

trophoblast of the human placenta with gestational age. Placenta 18, 295–299 (1997).

Scientific Reports |

Vol:.(1234567890)

(2022) 12:4056 |

https://doi.org/10.1038/s41598-022-07893-y

14

www.nature.com/scientificreports/

54. Mitani, M. et al. Clinical features of fetal growth restriction complicated later by preeclampsia. J. Obstet. Gynaecol. Res. 35, 882–887

(2009).

55. Korevaar, T. I. M. et al. Reference ranges and determinants of total hCG levels during pregnancy: The Generation R Study. Eur. J.

Epidemiol. 30, 1057–1066 (2015).

56. Meurs, M. V. et al. Bench-to-bedside review: Angiopoietin signalling in critical illness—a future target?. Crit. Care. 13, 207 (2009).

Acknowledgements

This work was supported by the JSPS (17H01550, 18K15421, 20H00530), and Japan Association of Obstetricians

and Gynecologists Ogyaa Donation Foundation (JODF). We thank Charles Allan, PhD, and Catherine Perfect,

MA (Cantab), from Edanz (https://​jp.​edanz.​com/​ac), for editing a draft of this manuscript.

Author contributions

R.K. and T.U. designed the research, analyzed the data, and wrote the manuscript. M.Y., T.T., S.T., and Y.F. performed the experiments. K.K. and D.K. wrote the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​07893-y.

Correspondence and requests for materials should be addressed to T.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:4056 |

https://doi.org/10.1038/s41598-022-07893-y

15

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る