リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Intensity Interference in a Coherent Spin-Polarized Electron Beam」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Intensity Interference in a Coherent Spin-Polarized Electron Beam

Kuwahara, Makoto Yoshida, Yuya Nagata, Wataru Nakakura, Kojiro Furui, Masato Ishida, Takafumi Saitoh, Koh Ujihara, Toru Tanaka, Nobuo 名古屋大学

2021.03.26

概要

We investigate the intensity interference between pairs of electrons using a spin-polarized electron beam having a high polarization and a narrow energy width. We observe spin-dependent antibunching on the basis of coincident counts of electron pairs performed with a spin-polarized transmission electron microscope, which could control the spin-polarization without any changes in the electron optics. The experimental results show that the time correlation was only affected by the spin polarization, demonstrating that the antibunching is associated with fermionic statistics. The coherent spin-polarized electron beam facilitates the extraction of intrinsic quantum interference.

参考文献

[1] P. Roingeard, Viral detection by electron microscopy: past, present and future, Biol. Cell 100, 491 (2008).

[2] S. Iijima, Helical microtubules of graphitic carbon, Nature (London) 354, 56 (1991).

[3] N. Shibata, T. Seki, G. Sánchez-Santolino, S. D. Findlay, Y. Kohno, T. Matsumoto, R. Ishikawa, and Y. Ikuhara, Electric field imaging of single atoms, Nat. Commun. 8, 15631 (2017).

[4] T. Tanigaki, T. Akashi, A. Sugawara, K. Miura, J. Hayakawa, K. Niitsu, T. Sato, X. Yu, Y. Tomioka, K. Harada, D. Shindo, Y. Tokura, and H. Shinada, Magnetic field obser vations in CoFeB/Ta layers with 0.67-nm resolution by electron holography, Sci. Rep. 7, 16598 (2017).

[5] D. Cooper, N. Bernier, and J. Rouvi`ere, Combining 2 nm Spatial Resolution and 0.02% Precision for Deformation Mapping of Semiconductor Specimens in a Transmission Electron Microscope by Precession Electron Diffraction, Nano Lett. 15, 5289 (2015).

[6] P. A. Midgley and R. E. Dunin-Borkowski, Electron tomography and holography in materials science, Nat. Mater. 8, 271 (2009).

[7] J. Yamasaki, S. Morishita, Y. Shimaoka, K. Ohta, and H. Sasaki, Phase imaging and atomic-resolution imaging by electron diffractive imaging, Jpn. J. Appl. Phys. 58, 120502 (2019).

[8] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for AharonovBohm Effect with Magnetic Field Completely Shielded from Electron Wave, Phys. Rev. Lett. 56, 792 (1986).

[9] M. Uchida and A. Tonomura, Generation of electron beams carrying orbital angular momentum, Nature (London) 464, 737 (2010).

[10] K. Y. Bliokh, M. R. Dennis, and F. Nori, Relativistic Electron Vortex Beams: Angular Momentum and SpinOrbit Interaction, Phys. Rev. Lett. 107, 174802 (2011).

[11] R. Hanbury Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature (London) 177, 27 (1956).

[12] H. Kiesel, A Renz, and F. Hasselbach, Observation of Hanbury Brown–Twiss anticorrelations for free electrons, Nature (London) 418, 392 (2002).

[13] M. P. Silverman, On the feasibility of observing electron antibunching in a field-emission beam, Phys. Lett. A 120, 442 (1987).

[14] T. Kodama, N. Osakabe, J. Endo, A. Tonomura, K. Ohbayashi, T. Urakami, S. Ohsuka, H. Tsuchiya, Y. Tsuchiya, and Y. Uchikawa, Feasibility of observing twoelectron interference, Phys. Rev. A 57, 2781 (1998).

[15] T. Kodama and N. Osakabe, Mechanism for correlation in a coherent electron beam, Microscopy 68, 133 (2019).

[16] J. Kessler, Polarized Electrons, 2nd ed. (Springer-Verlag, Berlin, Heisenberg, 1985), p. 91–96.

[17] M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. G. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope, Appl. Phys. Lett. 105, 193101 (2014).

[18] X. G. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, and T. Koshikawa, Super-high brightness and high-spin-polarization photocathode, Appl. Phys. Express 1, 045002 (2008).

[19] M. Kuwahara, Y. Nambo, K. Aoki, K. Sameshima, X. G. Jin, T. Ujihara, H. Asano, K. Saitoh, Y. Takeda, and N. Tanaka, The Boersch effect in a picosecond pulsed electron beam emitted from a semiconductor photocathode, Appl. Phys. Lett. 109, 013108 (2016).

[20] Y. Nambo, M. Kuwahara, S. Kusunoki, K. Sameshima, K. Saitoh, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, Nano-second time-resolved measurement in spin-polarized pulse TEM, AMTC Lett. 4, 256 (2014).

[21] Y. Honda, S. Matsuba, X. G. Jin, T. Miyajima, M. Yamamoto, T. Uchiyama, M. Kuwahara, and Y. Takeda, Temporal response measurements of GaAs-based photocathodes, Jpn. J. Appl. Phys. 52, 086401 (2013).

[22] M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, Cambridge, England, 1999), p. 572.

[23] P. W. Hawkes and H. Kasper, Principles of Electron Optics (Academic Press, London, 1989), Vol. 2, Chap. 48.

[24] G. F. Knoll, Radiation Detection and Measurement, 4th ed. (Wiley, New York, 2010), Chap. 4.

[25] M. Galanti, R. Gott, and J. F. Renaud, A high resolution, high sensitivity channel plate image intensifier for use in particle spectrographs, Rev. Sci. Instrum. 42, 1818 (1971).

[26] M. P. Silverman, Second-order temporal and spatial coherence of thermal electrons, Il Nuovo Cimento 99, 227 (1987).

[27] P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, Interaction-Free Measurement, Phys. Rev. Lett. 74, 4763 (1995).

[28] H. Morishita, T. Ohshima, M. Kuwahara, Y. Ose, and T. Agemura, Resolution improvement of low-voltage scanning electron microscope by bright and monochromatic electron gun using negative electron affinity photocathode, J. Appl. Phys. 127, 164902 (2020).

[29] P. Kruit, R. G. Hobbs, C. S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, Designs for a quantum electron microscope, Ultramicroscopy 164, 31 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る