リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The fourth-order total variation flow in R^n」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The fourth-order total variation flow in R^n

Giga, Yoshikazu Kuroda, Hirotoshi Łasica, Michał 北海道大学

2022.05.18

概要

We define rigorously a solution to the fourth-order total variation flow equation in Rn. If n ≥ 3, it can be understood as a gradient flow of the total variation energy in D-1 ,the dual space of D10, which is the completion of the space of compactly supported smooth functions in the Dirichlet norm. However, in the low dimensional case n ≤ 2, the space D-1 does not contain characteristic functions of sets of positive measure, so we extend the notion of solution to a larger space. We characterize the solution in terms of what is called the Cahn-Hoffman vector field, based on a duality argument. This argument relies on an approximation lemma which itself is interesting. We introduce a notion of calibrability of a set in our fourth-order setting. This notion is related to whether a characteristic function preserves its form throughout the evolution. It turns out that all balls are calibrable. However, unlike in the second-order total variation flow, the outside of a ball is calibrable if and only if n ≠ 2. If n ≠ 2, all annuli are calibrable, while in the case n = 2, if an annulus is too thick, it is not calibrable. We compute explicitly the solution emanating from the characteristic function of a ball. We also provide a description of the solution emanating from any piecewise constant, radially symmetric datum in terms of a system of ODEs.

参考文献

[1] F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in RN , Math. Ann., 332 (2005), 329–366.

[2] L. Ambrosio, N. Luigi and G. Savar´e, Gradient flows in metric spaces and in the space of probability measures, Second edition, Lectures in Mathematics ETH Zu¨rich, Birkh¨auser Verlag, Basel, 2008.

[3] F. Andreu-Vaillo, V. Caselles and J. M. Maz´on, Parabolic quasilinear equations minimizing linear growth functionals, Progress in Mathematics, 223, Birkh¨auser Verlag, Basel, 2004.

[4] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN , J. Differential Equations, 184 (2002), 475–525.

[5] G. Bellettini, M. Novaga and M. Paolini, Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound., 3 (2001), 415–446.

[6] H. Br´ezis, Op´erateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, Notas de Matem´atica, No. 50, North- Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.

[7] W. C. Carter, A. R. Roosen, J. W. Cahn and J. E. Taylor, Shape evolution by surface dif- fusion and surface attachment limited kinetics on completely faceted surfaces, Acta Metall. Mater., 43 (1995), 4309–4323.

[8] C. M. Elliott and S. A. Smitheman, Analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture, Commun. Pure Appl. Anal., 6 (2007), 917–936.

[9] W. Fulton, Algebraic topology. A first course, Graduate Texts in Mathematics, 153, Springer- Verlag, New York, 1995.

[10] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.

[11] M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order prob- lems, Japanese J. Ind. Appl. Math., 27 (2010), 323–345.

[12] M.-H. Giga and Y. Giga, Crystalline surface diffusion flow for graph-like curves, Hokkaido University Preprint Series in Mathematics, 1142 (2022).

[13] Y. Giga and R. V. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Contin. Dyn. Syst., 30 (2011), 509–535.

[14] Y. Giga, H. Kuroda and H. Matsuoka, Fourth-order total variation flow with Dirichlet condition: Characterization of evolution and extinction time estimates, Adv. Math. Sci. Appl., 24 (2014), 499–534.

[15] Y. Giga, M. Muszkieta and P. Rybka, A duality based approach to the minimizing total variation flow in the space H−s, Jpn. J. Ind. Appl. Math., 36 (2019), 261–286.

[16] Y. Giga and N. Poˇz´ar, Motion by crystalline-like mean curvature: a survey, Hokkaido University Preprint Series in Mathematics, 1140 (2021).

[17] Y. Giga and Y. Ueda, Numerical computations of split Bregman method for fourth order total variation flow, J. Comput. Phys., 405 (2020), 109114.

[18] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[19] Y. Kashima, A subdifferential formulation of fourth order singular diffusion equations, Adv. Math. Sci. Appl., 14 (2004), 49–74.

[20] Y. Kashima, Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one, J. Funct. Anal., 262 (2012), 2833–2860.

[21] R. V. Kohn, Surface relaxation below the roughening temperature: some recent progress and open questions, In: Nonlinear partial differential equations, Abel Symp., 7, Springer, Heidelberg, 2012, 207–221.

[22] R. V. Kohn and H. M. Versieux, Numerical analysis of a steepest-descent PDE model for surface relaxation below the roughening temperature, SIAM J. Numer. Anal., 48 (2010), 1781–1800.

[23] Y. K¯omura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493– 507.

[24] M. L- asica, S. Moll and P. B. Mucha, Total variation denoising in l1 anisotropy. SIAM J. Imaging Sci., 10 (2017), 1691–1723.

[25] G. P. Leonardi, An overview on the Cheeger problem, In: New trends in shape optimization, Internat. Ser. Numer. Math., 166, Birkh¨auser/Springer, Cham, 2015, 117–139.

[26] I. V. Odisharia, Simulation and analysis of the relaxation of a crystalline surface, Ph.D. thesis, New York University, New York 2006.

[27] S. Osher, A. Sol´e and L. Vese, Image decomposition and restoration using total variation minimization and the H−1 norm, Multiscale Model. Simul., 1 (2003), 349–370.

[28] W. Rudin, Functional analysis, Second edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.

[29] L. Schwartz, Th´eorie des distributions, Nouvelle ´edition, enti´erement corrig´ee, refondue et augment´ee, Publications de l’Institut de Math´ematique de l’Universit´e de Strasbourg, IX-X Hermann, Paris 1966.

[30] H. Spohn, Surface dynamics below the roughening transition, J. Phys. I France, 3 (1993), 69–81.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る