リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spin orbit torques in ferrimagnetic GdFeCo with various compositions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spin orbit torques in ferrimagnetic GdFeCo with various compositions

Kawakami, Keisuke Kato, Takeshi Oshima, Daiki Iwata, Satoshi 名古屋大学

2020.04

概要

Compositional dependence of spin–orbit torque (SOT) of the bilayer comprised of Ta and ferrimagnetic GdFeCo was investigated. Critical current density of SOT switching J sw of the GdFeCo/Ta bilayers did not vary with Gd composition x, and were found to exhibit roughly J sw = 11 MA cm^−2. Two orthogonal components of SOT, damping-like torque τ DL and field-like torque τ FL were estimated by measuring harmonic Hall resistance under in-plane fields parallel and perpendicular to the AC current, respectively. The absolute values of SOT, midτ DLmid and midτ FLmid, were confirmed to be roughly constant within 22 ≤ x ≤ 28. On the other hand, the sign of τ FL changed across the compensation composition. These results suggest that the injected spin current is considered to exert a torque to the transition metal FeCo moment rather than to the rare earth Gd moment.

この論文で使われている画像

参考文献

1) I. M. Miron, K. Garello, G. Gaudin, P. -J. Zermatten, M. V. Costache, S. Auffret, S.

Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).

2) L. Liu, C. -F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555

(2012).

3) L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett.

109, 096602 (2012).

4) K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G.

Gaudin, and P. Gambardella, Appl. Phys. Lett. 105, 212402 (2014).

5) J. Park, G. E. Rowlands, O. J. Lee, D. C. Ralph, R. A. Buhrman, Appl. Phys. Lett. 105,

102404 (2014).

6) S. Fukami, T. Anekawa, C. Zhang, H. Ohno, Nat. Nanotechnol. 11, 621 (2016).

7) T. Min, Q. Chen, R. Beach, G. Jan, C. Horng, W. Kula, T. Torng, R. Tong, T. Zhong, D.

Tang, P. Wang, M. Chen, J. Z. Sun, J. K. Debrosse, D. C. Worledge, T. M. Maffitt, and W.

J. Gallagher, IEEE Trans. Magn. 46, 2322 (2010).

8) S. Murakami, N. Nagaosa, and S. -C. Zhang, Science 301, 1348 (2003).

9) E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).

10) K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, Phys.

Rev. Lett. 101, 036601 (2008).

11) L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601

(2011).

12) C. -F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett.

101, 122404 (2012).

13) A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi,

A. Manchon, E. -A. Kim, N. Samarth, and D. C. Ralph, Nature 511, 449 (2014).

14) Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. -T. Chang,

M. Montazeri, G. Yu, W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak, and K. L. Wan,

Nat. Mater. 13, 699 (2014).

15) W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, A. Hoffmann, F. Freimuth, and Y.

Mokrousov, Phys. Rev. Lett. 113, 196602 (2014).

16) S. Fukami, C. Zhang, S. Duttagupta, A. Kurenkov, and H. Ohno, Nat. Mater. 15, 535

(2016).

17) T. Gao, A. Qaiumzadeh, H. An, A. Musha, Y. Kageyama, J. Shi, and K. Ando, Phys. Rev.

Lett. 121, 017202 (2018).

Template for JJAP Regular Papers (Jan. 2014)

18) P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K.

Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth,

Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W.

Edmonds, B. L. Gallagher, and T. Jungwirth, Science 351, 587 (2016).

19) S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, Nature Mater. 15, 535

(2016).

20) N. Roschewsky, T. Matsumura, S. Cheema, F. Hellman, T. Kato, S. Iwata, and S.

Salahuddin, Appl. Phys. Lett. 109, 112403 (2016).

21) N. Roschewsky, C. -H. Lambert, and S. Salahuddin, Phys. Rev. B 96, 064406 (2017).

22) R. Mishra, J. Yu, X. Qiu, M. Motapothula, T. Venkatesan, and H. Yang, Phys. Rev. Lett.

118 167201 (2017).

23) C. Bi, H. Almasi, K. Price, T. Newhouse-Illige, M. Xu, S. R. Allen, X. Fan, and W. Wang,

Phys. Rev. B 95, 104434 (2017).

24) R. K. Wangsness, Phys. Rev. 91, 1085 (1953).

25) C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T.

Rasing, Phys. Rev. B 73, 220402(R), (2006).

26) T. Kato, K. Nakazawa, R. Komiya, N. Nishizawa, S. Tsunashima, and S. Iwata, IEEE

Trans. Magn. 44, 3380 (2008).

27) K. -J Kim, S. K. Kim, Y. Hirata, S. -H. Oh, T. Tono, D. -H. Kim, T. Okuno, W. S. Ham, S.

Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K. -J. Lee, and T. Ono, Nature

Mater. 16, 1187 (2017).

28) T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue,

Phys. Rev. B 77, 165117 (2008).

29) Y. Chen, Q. Zhang, J. Jia, Y. Zheng, Y. Wang, X. Fan, and J. Cao, Appl. Phys. Lett. 112,

232402 (2018).

30) R. J. Gambino, T. Suzuki, Magneto-Optical Recording Materials (IEEE Press, New York,

1999) 1st ed., p. 33.

31) S. Tsunashima, S. Masui, T. Kobayashi, and S. Uchiyama, J. Appl. Phys. 53, 8175 (1982).

32) S. Tsunashima, J. Phys. D: Appl. Phys. 34, R87 (2001).

33) B. Dai, T. Kato, S. Iwata, and S. Tsunashima, IEEE Trans. Magn. 48, 3223 (2001).

34) B. Dai, T. Kato, S. Iwata, and S. Tsunashima, IEEE Trans. Magn. 49, 4359 (2013).

35) B. Dai, Y. Guo, J. Zhu, T. Kato, S. Iwata, S. Tsunashima, L. Yang, and J. Han, J. Phys. D:

Appl. Phys. 50, 135005 (2017).

36) T. Higashide, B. Dai, T. Kato, D. Oshima, and S. Iwata, Magn. Lett. 7, 3505605 (2018).

10

Template for JJAP Regular Papers (Jan. 2014)

37) M. Hayashi, J. Kim, M. Yamanouchi, and H. Ohno, Phys. Rev. B 89, 144425 (2014).

Figure Captions

Fig. 1. Schematic of the microfabricated GdFeCo/Ta bilayer to measure anormalous Hall

effect (AHE), Spin orbit torque (SOT) switching, and SOT effective fields by flowing a

DC current IDC, pulse current Ipulse, and AC current IAC, respectively.

Fig. 2. AHE loops of Gd24(Fe90Co10)76 and Gd25(Fe90Co10)75 with a width of Hall bar of 6

µm measured by flowing a DC current IDC = 100 µA.

Fig. 3. Gd composition dependence of net magnetization Mnet, effectve anisotropy field

Hkeff, and polar Kerr rotation qK of Gdx(Fe90Co10)100–x. Hkeff was estimated from the

saturation field of the in-plane hysteresis loop, and qK was measured at a wavelength of l

= 700 nm.

Fig. 4. In-plane field Hx dependence of the SOT switching current density Jsw for Ta /

Gdx(Fe90Co10)100–x bilayers with various Gd contents x.

Fig. 5. Typical results of the harmonic measurements of Ta/Gd23(Fe90Co10)77 bilayers under

the AC current density of JAC = 3.2 MA/cm2. Before the measurements, sample was

magnetized +z direction.

Fig. 6. AC current density JAC dependence of (a) damping-like effective field HDL and (b)

field-like effective field HFL estimated for Ta/Gdx(Fe90Co10)100–x bilayers. HDL and HFL

were evaluated under the condition that Mnet of GdFeCo initially pointed in +z direction.

Fig. 7. Gd composition dependence of (a) damping- and field-like effective fields per unit

AC current density (HDL/JAC and HFL/JAC), (b) damping- and field-like torque per unit AC

current density (tDL/JAC and tFL/JAC) in Ta/Gdx(Fe90Co10)100–x bilayers. tDL and tFL were

calculated as tDL = Mnet HDL and tFL = Mnet HFL, respectively. SOTs and SOT effective

fields were evaluated when Mnet pointed +z direction. The compensation composition of

11

Template for JJAP Regular Papers (Jan. 2014)

GdFeCo is shown as a dashed line in the figure.

Fig. 8. Schematic of damping-like and field-like torques, tDL and tFL, respectively, acting

on sub-lattice FeCo magnetization. Spin current injected from the adjacent Ta exerts

torques tDL and tFL to FeCo sub-lattice moment rather than Gd moment.

Fig. 9. In-plane field Hx dependence of the SOT switching current density Jsw for HFL/Jc =

0, 1.5, and –1.5 Oe/(MA/cm2) simulated based on macro-spin model. Hkeff = 2 kOe, HDL/Jc

= –5 Oe, g

1.93 × 107 rad/s·Oe, and a = 0.1 were assumed to simulate the Jsw of

Gd22(Fe90Co10)78/Ta and Gd28(Fe90Co10)72/Ta bilayers.

12

Template for JJAP Regular Papers (Jan. 2014)

Fig.1.

Fig.2.

13

Template for JJAP Regular Papers (Jan. 2014)

Fig.3.

Fig.4.

14

Template for JJAP Regular Papers (Jan. 2014)

Fig.5.

Fig.6.

15

Template for JJAP Regular Papers (Jan. 2014)

Fig.7.

Fig.8.

16

Template for JJAP Regular Papers (Jan. 2014)

Fig.9.

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る